Shared antithetic integral control for dynamic cell populations

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Lorenzo Duso - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Tommaso Bianucci - , Fakultät Informatik, Exzellenzcluster PoL: Physik des Lebens, Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität Dresden (Autor:in)
  • Christoph Zechner - , Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität Dresden, Exzellenzcluster PoL: Physik des Lebens (Autor:in)

Abstract

Engineering reliable synthetic circuits in living organisms is very challenging because of molecular fluctuations, cell-to-cell variability and metabolic burden, for instance. Recently, the antithetic integral controller (AIC) has been proposed as an effective strategy to design robust synthetic circuits in living cells. In its canonical form, the AIC acts at the single-cell level to regulate the abundance of a certain intracellular component to a prescribed set-point. In this work, we propose a variant of the AIC that allows the control of collective properties of a dynamic cell population, such as the cell number or the total amount of protein expressed across the population. The resulting controller-which we term shared AIC (sAIC)-uses a single controller network that acts on all cells simultaneously through a shared environment. We describe the sAIC mathematically using a stochastic multiscale formalism, which accounts for noisy cell-internal dynamics as well as cell division and death events. We demonstrate the effectiveness of the sAIC approach using two simulation-based case studies.

Details

OriginalspracheEnglisch
Titel60th IEEE Conference on Decision and Control, CDC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten2053-2058
Seitenumfang6
ISBN (elektronisch)9781665436595
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings of the IEEE Conference on Decision and Control
Band2021-December
ISSN0743-1546

Konferenz

Titel60th IEEE Conference on Decision and Control
KurztitelCDC 2021
Dauer13 - 17 Dezember 2021
StadtAustin
LandUSA/Vereinigte Staaten