Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jiangbin Zhang - , University of Cambridge, Imperial College London (Autor:in)
  • Moritz H. Futscher - , AMOLF (Autor:in)
  • Vincent Lami - , Universität Heidelberg (Autor:in)
  • Felix U. Kosasih - , University of Cambridge (Autor:in)
  • Changsoon Cho - , University of Cambridge, Korea Advanced Institute of Science & Technology (KAIST) (Autor:in)
  • Qinying Gu - , University of Cambridge (Autor:in)
  • Aditya Sadhanala - , University of Cambridge (Autor:in)
  • Andrew J. Pearson - , University of Cambridge (Autor:in)
  • Bin Kan - , Nankai University (Autor:in)
  • Giorgio Divitini - , University of Cambridge (Autor:in)
  • Xiangjian Wan - , Nankai University (Autor:in)
  • Dan Credgington - , University of Cambridge (Autor:in)
  • Neil C. Greenham - , University of Cambridge (Autor:in)
  • Yongsheng Chen - , Nankai University (Autor:in)
  • Caterina Ducati - , University of Cambridge (Autor:in)
  • Bruno Ehrler - , AMOLF (Autor:in)
  • Yana Vaynzof - , Professur für Neuartige Elektroniktechnologien (gB/IFW und cfaed), Universität Heidelberg (Autor:in)
  • Richard H. Friend - , University of Cambridge (Autor:in)
  • Artem A. Bakulin - , Imperial College London (Autor:in)

Abstract

Bulk heterojunction (BHJ) nonfullerene organic solar cells prepared from sequentially deposited donor and acceptor layers (sq-BHJ) have recently been shown to be highly efficient, environmentally friendly, and compatible with large area and roll-to-roll fabrication. However, the related photophysics at donor-acceptor interface and the vertical heterogeneity of donor-acceptor distribution, critical for exciton dissociation and device performance, have been largely unexplored. Herein, steady-state and time-resolved optical and electrical techniques are employed to characterize the interfacial trap states. Correlating with the luminescent efficiency of interfacial states and its nonradiative recombination, interfacial trap states are characterized to be about 40% more populated in the sq-BHJ devices than the as-cast BHJ (c-BHJ), which probably limits the device voltage output. Cross-sectional energy-dispersive X-ray spectroscopy and ultraviolet photoemission spectroscopy depth profiling directly visualize the donor–acceptor vertical stratification with a precision of 1–2 nm. From the proposed “needle” model, the high exciton dissociation efficiency is rationalized. This study highlights the promise of sequential deposition to fabricate efficient solar cells, and points toward improving the voltage output and overall device performance via eliminating interfacial trap states.

Details

OriginalspracheEnglisch
Aufsatznummer1902145
FachzeitschriftAdvanced energy materials
Jahrgang9
Ausgabenummer47
PublikationsstatusVeröffentlicht - 1 Dez. 2019
Peer-Review-StatusJa

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • exciton dissociation, nonfullerene acceptors, sequential deposition, trap states, vertical stratification