Semistatic and sparse variance-optimal hedging

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Paolo Di Tella - (Autor:in)
  • Martin Haubold - (Autor:in)
  • Martin Keller-Ressel - (Autor:in)

Abstract

We consider the problem of hedging a contingent claim with a "semistatic" strategy composed of a dynamic position in one asset and static (buy-and-hold) positions in other assets. We give general representations of the optimal strategy and the hedging error under the criterion of variance optimality and provide tractable formulas using Fourier integration in case of the Heston model. We also consider the problem of optimally selecting a sparse semistatic hedging strategy, i.e., a strategy that only uses a small subset of available hedging assets and discuss parallels to the variable-selection problem in linear regression. The methods developed are illustrated in an extended numerical example where we compute a sparse semistatic hedge for a variance swap using European options as static hedging assets.

Details

OriginalspracheEnglisch
Seiten (von - bis)403-425
Seitenumfang23
FachzeitschriftMathematical finance
Jahrgang30
Ausgabenummer2
PublikationsstatusVeröffentlicht - Apr. 2020
Peer-Review-StatusJa

Externe IDs

Scopus 85075015281
ORCID /0000-0003-0913-3363/work/166762742

Schlagworte

Schlagwörter

  • STOCHASTIC VOLATILITY, OPTIONS