Self-organized Allocation of Dependent Tasks in Industrial Applications

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Self-organization is a powerful method to bring forward automation in industrial applications. However, tasks in such use cases often have high complexity and strong interdependencies, limiting the applicability of state-of-the-art self-organization algorithms. This paper studies self-organization algorithms that are suitable for task allocation in industrial manufacturing processes with strong task dependencies. Two algorithms based on the Response Threshold Model are proposed in this paper to fit task dependencies. For decision-making, they rely solely on local interactions between the involved agents and the environment. To analyze their performance, an upper bound of the achievable performance is calculated using methods from Synchronous Data Flow. Simulations are performed under both homogeneous and heterogeneous agents and different task-switching costs. The results indicate that the DRTM FR-based algorithm, which evolves agents into a specialized team, has a better performance.

Details

OriginalspracheEnglisch
Titel2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)
Herausgeber (Verlag)IEEE
Seiten170-176
Seitenumfang7
ISBN (elektronisch)9781665412612
ISBN (Print)978-1-6654-2940-5
PublikationsstatusVeröffentlicht - 1 Okt. 2021
Peer-Review-StatusJa

Konferenz

Titel2nd IEEE International Conference on Autonomic Computing and Self-Organizing Systems
KurztitelACSOS 2021
Veranstaltungsnummer2
Dauer27 September - 1 Oktober 2021
Webseite
BekanntheitsgradInternationale Veranstaltung
Ortonline
StadtWashington
LandUSA/Vereinigte Staaten

Externe IDs

Scopus 85124801027

Schlagworte

Schlagwörter

  • Computational modeling, Conferences, Costs, Decision making, Limiting, Manufacturing processes, Upper bound