Self-Limited Ice Formation and Efficient De-Icing on Superhydrophobic Micro-Structured Airfoils through Direct Laser Interference Patterning

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sabri Alamri - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Vittorio Vercillo - , Airbus Group (Autor:in)
  • Alfredo I. Aguilar-Morales - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Frederic Schell - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Marc Wetterwald - , Airbus Group (Autor:in)
  • Andres F. Lasagni - , Professur für Laserbasierte Fertigung, Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Elmar Bonaccurso - , Airbus Group (Autor:in)
  • Tim Kunze - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)

Abstract

Forward facing aerodynamic surfaces such as rotors and wings are susceptible to ice build-up when exposed to atmospheric icing conditions. If not removed, accumulated ice on aircraft surfaces affects aerodynamics or rotation balance, which can ultimately lead to increased fuel consumption, reduced operational performance and to potentially hazardous situations. Laser surface structuring is proposed as an alternative technology to coatings for achieving icephobic properties and support anti-icing and de-icing processes on aerodynamic surfaces. However, to authors' knowledge, no study available in the literature reports on the icing behavior of microtextured curved aerodynamic profiles and the effect of the laser surface treatment on the electrothermal heating used for ice protection systems. In this work, direct laser interference patterning is employed to fabricate hierarchical micro- and nanostructures directly on a non-planar titanium airfoil. The anti-icing performance of the laser-treated airfoil is tested in an icing wind tunnel under simulated atmospheric conditions. The results demonstrate a self-limiting ice growth, a decrease in the deicing electro-thermal power up to 80%, and up 60% lower heating power necessary to keep the surface free of ice than on the reference airfoil.

Details

OriginalspracheEnglisch
Aufsatznummer2001231
Seitenumfang10
FachzeitschriftAdvanced materials interfaces
Jahrgang7
Ausgabenummer22
Frühes Online-DatumOkt. 2020
PublikationsstatusVeröffentlicht - Nov. 2020
Peer-Review-StatusJa

Externe IDs

Scopus 85092034356
ORCID /0000-0003-4333-4636/work/196675456

Schlagworte

Schlagwörter

  • Ice protection systems, Icephobic, Laser processing, Micro-, Nano-patterning, Surface modification