Self-Determined Reciprocal Recommender System with Strong Privacy Guarantees

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Saskia Nuñez von Voigt - (Autor:in)
  • Erik Daniel - , Technische Universität Berlin (Autor:in)
  • Florian Tschorsch - , Technische Universität Berlin (Autor:in)

Abstract

Recommender systems are widely used. Usually, recommender systems are based on a centralized client-server architecture. However, this approach implies drawbacks regarding the privacy of users. In this paper, we propose a distributed reciprocal recommender system with strong, self-determined privacy guarantees, i.e., local differential privacy. More precisely, users randomize their profiles locally and exchange them via a peer-to-peer network. Recommendations are then computed and ranked locally by estimating similarities between profiles. We evaluate recommendation accuracy of a job recommender system and demonstrate that our method provides acceptable utility under strong privacy requirements.

Details

OriginalspracheEnglisch
Titel16th International Conference on Availability, Reliability and Security, ARES 2021
ISBN (elektronisch)9781450390514
PublikationsstatusVeröffentlicht - Aug. 2021
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 85113254546