Self-Assembly of Nanovoids in Si Microcrystals Epitaxially Grown on Deeply Patterned Substrates

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Andrea Barzaghi - , Polytechnic University of Milan (Autor:in)
  • Saleh Firoozabadi - , Philipps-Universität Marburg (Autor:in)
  • Marco Salvalaglio - , Technische Universität Dresden (Autor:in)
  • Roberto Bergamaschini - , Università degli Studi di Milano Bicocca (Autor:in)
  • Andrea Ballabio - , Polytechnic University of Milan (Autor:in)
  • Andreas Beyer - , Philipps-Universität Marburg (Autor:in)
  • Marco Albani - , Università degli Studi di Milano Bicocca (Autor:in)
  • Joao Valente - , University of Glasgow (Autor:in)
  • Axel Voigt - , Technische Universität Dresden (Autor:in)
  • Douglas J. Paul - , University of Glasgow (Autor:in)
  • Leo Miglio - , Università degli Studi di Milano Bicocca (Autor:in)
  • Francesco Montalenti - , Università degli Studi di Milano Bicocca (Autor:in)
  • Kerstin Volz - , Philipps-Universität Marburg (Autor:in)
  • Giovanni Isella - , Polytechnic University of Milan (Autor:in)

Abstract

We present an experimental and theoretical analysis of the formation of nanovoids within Si microcrystals epitaxially grown on Si patterned substrates. The growth conditions leading to the nucleation of nanovoids have been highlighted, and the roles played by the deposition rate, substrate temperature, and substrate pattern geometry are identified. By combining various scanning and transmission electron microscopy techniques, it has been possible to link the appearance pits of a few hundred nanometer width at the microcrystal surface with the formation of nanovoids within the crystal volume. A phase-field model, including surface diffusion and the flux of incoming material with shadowing effects, reproduces the qualitative features of the nanovoid formation thereby opening new perspectives for the bottom-up fabrication of 3D semiconductors microstructures.

Details

OriginalspracheEnglisch
Seiten (von - bis)2914-2920
Seitenumfang7
FachzeitschriftCrystal growth & design
Jahrgang20
Ausgabenummer5
PublikationsstatusVeröffentlicht - 6 Mai 2020
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 85084742273
ORCID /0000-0002-4217-0951/work/142237400

Schlagworte

Schlagwörter

  • SILICON, GE, COALESCENCE, DIFFUSION, CRYSTALS, LAYERS