Self-assembled GaN quantum wires on GaN/AlN nanowire templates

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jordi Arbiol - , Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) (Autor:in)
  • Cesar Magen - , University of Zaragoza (Autor:in)
  • Pascal Becker - , Justus-Liebig-Universität Gießen (Autor:in)
  • Gwénolé Jacopin - , Université Paris-Saclay (Autor:in)
  • Alexey Chernikov - , Philipps-Universität Marburg (Autor:in)
  • Sören Schäfer - , Philipps-Universität Marburg (Autor:in)
  • Florian Furtmayr - , Justus-Liebig-Universität Gießen, Technische Universität München (Autor:in)
  • Maria Tchernycheva - , Université Paris-Saclay (Autor:in)
  • Lorenzo Rigutti - , Université Paris-Saclay, Université de Rouen (Autor:in)
  • Jörg Teubert - , Justus-Liebig-Universität Gießen (Autor:in)
  • Sangam Chatterjee - , Philipps-Universität Marburg (Autor:in)
  • Joan R. Morante - , Catalonia Institute for Energy Research, Universitat de Barcelona (Autor:in)
  • Martin Eickhoff - , Justus-Liebig-Universität Gießen (Autor:in)

Abstract

We present a novel approach for self-assembled growth of GaN quantum wires (QWRs) exhibiting strong confinement in two spatial dimensions. The GaN QWRs are formed by selective nucleation on {1120} (a-plane) facets formed at the six intersections of {1100} (m-plane) sidewalls of AlN/GaN nanowires used as a template. Based on microscopy observations we have developed a 3D model explaining the growth mechanism of QWRs. We show that the QWR formation is governed by self-limited pseudomorphic growth on the side facets of the nanowires (NWs). Quantum confinement in the QWRs is confirmed by the observation of narrow photoluminescence lines originating from individual QWRs with emission energies up to 4.4 eV. Time-resolved photoluminescence studies reveal a short decay time (∼120 ps) of the QWR emission. Capping of the QWRs with AlN allows enhancement of the photoluminescence, which is blue-shifted due to compressive strain. The emission energies from single QWRs are modelled assuming a triangular cross-section resulting from self-limited growth on a-plane facets. Comparison with the experimental results yields an average QWR diameter of about 2.7 nm in agreement with structural characterization. The presented results open a new route towards controlled realization of one-dimensional semiconductor quantum structures with a high potential both for fundamental studies and for applications in electronics and in UV light generation.

Details

OriginalspracheEnglisch
Seiten (von - bis)7517-7524
Seitenumfang8
FachzeitschriftNanoscale
Jahrgang4
Ausgabenummer23
PublikationsstatusVeröffentlicht - 7 Dez. 2012
Peer-Review-StatusJa
Extern publiziertJa

Schlagworte

ASJC Scopus Sachgebiete

Bibliotheksschlagworte