Segmenting Planar Superpixel Adjacency Graphs w.r.t. Non-planar Superpixel Affinity Graphs.

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Bjoern Andres - , Harvard University (Autor:in)
  • Julian Yarkony - , University of California at Santa Barbara (Autor:in)
  • B. S. Manjunath - , University of California at Santa Barbara (Autor:in)
  • Steffen Kirchhoff - , Harvard University (Autor:in)
  • Engin Türetken - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Charless C. Fowlkes - , University of California at Irvine (Autor:in)
  • Hanspeter Pfister - , Harvard University (Autor:in)

Abstract

We address the problem of segmenting an image into a previously unknown number of segments from the perspective of graph partitioning. Specifically, we consider minimum multicuts of superpixel affinity graphs in which all affinities between non-adjacent superpixels are negative. We propose a relaxation by Lagrangian decomposition and a constrained set of re-parameterizations for which we can optimize exactly and efficiently. Our contribution is to show how the planarity of the adjacency graph can be exploited if the affinity graph is non-planar. We demonstrate the effectiveness of this approach in user-assisted image segmentation and show that the solution of the relaxed problem is fast and the relaxation is tight in practice.

Details

OriginalspracheEnglisch
TitelEnergy Minimization Methods in Computer Vision and Pattern Recognition
Redakteure/-innenAnders Heyden, Fredrik Kahl, Carl Olsson, Magnus Oskarsson, Xue-Cheng Tai
Seiten266-279
Seitenumfang14
ISBN (elektronisch)978-3-642-40395-8
PublikationsstatusVeröffentlicht - 2013
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheLecture Notes in Computer Science
Band8081
ISSN0302-9743

Externe IDs

Scopus 84884930805
dblp conf/emmcvpr/AndresYMKTFP13
ORCID /0000-0001-5036-9162/work/161407126