Segmentation in Tomography Data: Exploring Data Augmentation for Supervised and Unsupervised Voxel Classification with Neural Networks

Publikation: Hochschulschrift/AbschlussarbeitDissertation

Beitragende

Abstract

Computertomographie (CT) bietet wertvolle Einblicke in die inneren Strukturen von Objekten und Organismen, was für Anwendungen von der Materialwissenschaft bis zur medizinischen Diagnostik von entscheidender Bedeutung ist. In CT-Daten ist ein Objekt durch eine 3D-Rekonstruktion dargestellt, die durch die Kombination mehrerer 2D-Röntgenbilder aus verschiedenen Winkeln um das Objekt herum erstellt wird. Jedes Voxel, ein Volumen Pixel, innerhalb des rekonstruierten Volumens stellt ein kleines kubisches Element dar und ermöglicht eine detaillierte räumliche Darstellung. Um aussagekräftige Informationen aus CT-Bilddaten zu extrahieren und eine Analyse und Interpretation zu ermöglichen, ist eine genaue Segmentierung der inneren Strukturen unerlässlich. Dies kann jedoch aufgrund verschiedener Artefakte, die durch die Physik eines CT-Scans und Eigenschaften des abgebildeten Objekts verursacht werden, eine Herausforderung darstellen. Diese Dissertation befasst sich direkt mit dieser Herausforderung, indem sie Techniken des Deep Learnings einsetzt. Konkret werden für die Segmentierung Convolutional Neural Networks (CNNs) verwendet, welche jedoch mit dem Problem begrenzter Trainingsdaten konfrontiert sind. Der Datenknappheit wird dabei durch Datenerweiterung begegnet, indem unbeaufsichtigt synthetische Trainingsdaten erzeugt und 2D- und 3D-Augmentierungssmethoden eingesetzt werden. Eine Kombination dieser Vervielfältigungsstrategien erlaubt eine Vereinfachung der Segmentierung in Voxeldaten und behebt effektiv die Datenknappheit. Im Wesentlichen zielt diese Arbeit darauf ab, das Training von CNNs zu vereinfachen, wobei wenige oder gar keine gelabelten Daten benötigt werden. Um die Ergebnisse dieser Arbeit Forschenden zugänglicher zu machen, wurden zwei benutzerfreundliche Softwarelösungen, unpAIred und AiSeg, entwickelt. Diese ermöglichen die Generierung von Trainingsdaten, die Augmentierung sowie das Training, die Analyse und die Anwendung von CNNs. In dieser kumulativen Arbeit werden zunächst einfachere, aber effiziente konventionelle Methoden zur Datenvervielfältigung untersucht, wie z. B. radiometrische und geometrische Bildmanipulationen, die bereits häufig in der Literatur verwendet werden. Diese Methoden werden jedoch in der Regel zufällig nacheinander angewandt und folgen keiner bestimmten Reihenfolge. Der Schwerpunkt des ersten Forschungsartikels liegt darin, diesen Ansatz zu untersuchen und sowohl Online- als auch Offline-Datenerweiterungspipelines zu entwickeln, die eine systematische Sequenzierung dieser Operationen ermöglichen. Bei der Offline Variante werden die auf der Festplatte gespeicherten Trainingsdaten vervielfältigt, während die Online-Erweiterung dynamisch zur Laufzeit erfolgt, kurz bevor die Bilder dem CNN gezeigt werden. Es wird erfolgreich gezeigt, dass eine zufällige Verkettung von geometrischen und radiometrischen Methoden den neuen Pipelines unterlegen ist. Anschließend wird ein Vergleich von 3D-CNNs durchgeführt, um die optimalen Modelle für Segmentierungsaufgaben zu identifizieren, wie z.B. die Segmentierung von Carbonbewehrung und Luftporen in CT-Scans von carbonverstärktem Beton (CRC). Durch die Bewertung von acht 3D-CNN-Modellen auf sechs Datensätzen werden Empfehlungen für die Auswahl des genauesten Modells auf der Grundlage der Datensatzeigenschaften gegeben. Die Analyse unterstreicht die konstante Überlegenheit des 3D UNets, eines der CNNs, und seiner Residualversion bei Segmentierung von Rovings (Carbonfaserbündel) und Poren. Aufbauend auf den 2D Augmentierungspipelines und den Ergebnissen des 3D-CNN-Vergleichs werden die Pipelines auf die dritte Dimension erweitert, um insbesondere die Segmentierung der Carbonbewehrung in CT-Scans von CRC zu ermöglichen. Eine vergleichende Analyse verschiedener 3D Augmentierungsstrategien, die sowohl Offline- als auch Online-Erweiterungsvarianten umfassen, gibt Aufschluss über deren Effektivität. Die Offline-Augmentierung führt zwar zu weniger Artefakten, kann aber nur Rovings segmentieren, die bereits in den Trainingsdaten vorhanden sind. Die Online-Augmentierung erweist sich hingegen als unerlässlich für die effektive Segmentierung von Carbon-Roving-Typen, die nicht im Datensatz enthalten sind. Einschränkungen wie die geringe Vielfalt des Datensatzes und eine zu aggressive Online-Datenerweiterung, die zu Segmentierungsartefakten führt, erfordern jedoch weitere Methoden, um die Datenknappheit zu beheben. In Anbetracht der Notwendigkeit eines größeren und vielfältigeren Datensatzes erweitert diese Arbeit die Ergebnisse der drei Forschungsartikel durch die Einführung einer auf Deep Learning basierenden Augmentierung, die ein Generative Adversarial Network (GAN), genannt Contrastive Unpaired Translation (CUT), zur Erzeugung synthetischer Trainingsdaten verwendet. Durch die Kombination des GANs mit den Augmentierungspipelines wird eine halbüberwachte Ende-zu-Ende-Trainingsmethode vorgestellt und die erfolgreiche Erzeugung von Trainingsdaten für die 2D-Porensegmentierung demonstriert. Es bestehen jedoch noch Herausforderungen bei der Implementierung einer stabilen 3D-CUT-Version, was weitere Forschungs- und Entwicklungsanstrengungen erfordert. Zusammenfassend adressieren die Ergebnisse dieser Dissertation Herausforderungen der CT-Datensegmentierung in der Materialwissenschaft, die durch Deep-Learning-Techniken und neuartige 2D- und 3D-Online- und Offline-Augmentierungspipelines gelöst werden. Durch die Evaluierung verschiedener 3D-CNN-Modelle werden maßgeschneiderte Empfehlungen für spezifische Segmentierungsaufgaben gegeben. Darüber hinaus zeigen Untersuchungen zur Deep Learning basierten Augmentierung mit CUT vielversprechende Ergebnisse bei der Generierung synthetischer Trainingsdaten. Zukünftige Arbeiten umfassen die Entwicklung einer stabilen Implementierung einer 3D-CUT-Version, die Erforschung neuer Modellarchitekturen und die Entwicklung von subvoxelgenauen Segmentierungstechniken. Diese haben das Potenzial für bedeutende Fortschritte bei der Segmentierung in Tomographiedaten.
Titel in Übersetzung
Segmentierung in Tomographiedaten: Erforschung von Datenaugmentierungsstrategien zur überwachten und unüberwachten Voxelklassifizierung mit neuronalen Netzen

Details

OriginalspracheEnglisch
QualifizierungsstufeDr.-Ing.
Gradverleihende Hochschule
Betreuer:in / Berater:in
  • Maas, Hans-Gerd, Hauptbetreuer:in
  • Rottensteiner, Franz, Gutachter:in, Externe Person
  • Weinmann, Martin, Gutachter:in, Externe Person
Förderer
  • Deutsche Forschungsgemeinshchaft
Datum der Verteidigung (Datum der Urkunde)12 Juli 2024
PublikationsstatusVeröffentlicht - 23 Sept. 2024
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.Thesis

Schlagworte

Schlagwörter

  • Segmentierung, Deep Learning, Computertomographie (CT), Datenvervielfältigung, Unüberwachtes Lernen, Segmentation, Deep Learning, Data Augmentation, Computed Tomography (CT), Unsupervised Learning