Seeing is believing: Quantifying is convincing: Computational image analysis in biology
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Buch/Sammelband/Gutachten › Beigetragen › Begutachtung
Beitragende
Abstract
Imaging is center stage in biology. Advances in microscopy and labeling techniques have enabled unprecedented observations and continue to inspire new developments. Efficient and accurate quantification and computational analysis of the acquired images, however, are becoming the bottleneck. We review different paradigms of computational image analysis for intracellular, single-cell, and tissue-level imaging, providing pointers to the specialized literature and listing available software tools. We place particular emphasis on clear categorization of image-analysis frameworks and on identifying current trends and challenges in the field. We further outline some of the methodological advances that are required in order to use images as quantitative scientific measurements.
Details
Originalsprache | Englisch |
---|---|
Titel | Focus on Bio-Image Informatics |
Redakteure/-innen | Winnok H. De Vos, Sebastian Munck, Jean-Pierre Timmermans |
Herausgeber (Verlag) | Springer Science and Business Media B.V. |
Seiten | 1-39 |
Seitenumfang | 39 |
ISBN (elektronisch) | 978-3-319-28549-8 |
ISBN (Print) | 978-3-319-28547-4 |
Publikationsstatus | Veröffentlicht - 21 Mai 2016 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Advances in Anatomy Embryology and Cell Biology |
---|---|
Band | 219 |
ISSN | 0301-5556 |
Externe IDs
Scopus | 84976407823 |
---|---|
ORCID | /0000-0003-4414-4340/work/142252136 |
Schlagworte
Schlagwörter
- Point Spread Function, Markov Random Field, Imaging Model, Uncertainty Quantification, Evidence Theory