Seeing is believing: Quantifying is convincing: Computational image analysis in biology

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in Buch/Sammelband/GutachtenBeigetragenBegutachtung

Beitragende

Abstract

Imaging is center stage in biology. Advances in microscopy and labeling techniques have enabled unprecedented observations and continue to inspire new developments. Efficient and accurate quantification and computational analysis of the acquired images, however, are becoming the bottleneck. We review different paradigms of computational image analysis for intracellular, single-cell, and tissue-level imaging, providing pointers to the specialized literature and listing available software tools. We place particular emphasis on clear categorization of image-analysis frameworks and on identifying current trends and challenges in the field. We further outline some of the methodological advances that are required in order to use images as quantitative scientific measurements.

Details

OriginalspracheEnglisch
TitelFocus on Bio-Image Informatics
Redakteure/-innenWinnok H. De Vos, Sebastian Munck, Jean-Pierre Timmermans
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten1-39
Seitenumfang39
ISBN (elektronisch)978-3-319-28549-8
ISBN (Print)978-3-319-28547-4
PublikationsstatusVeröffentlicht - 21 Mai 2016
Peer-Review-StatusJa

Publikationsreihe

ReiheAdvances in Anatomy Embryology and Cell Biology
Band219
ISSN0301-5556

Externe IDs

Scopus 84976407823
ORCID /0000-0003-4414-4340/work/142252136

Schlagworte

Schlagwörter

  • Point Spread Function, Markov Random Field, Imaging Model, Uncertainty Quantification, Evidence Theory