SDFEM with non-standard higher-order finite elements for a convection-diffusion problem with characteristic boundary layers
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
- University of Limerick
Abstract
Considering a singularly perturbed problem with exponential and characteristic layers, we show convergence for non-standard higher-order finite elements using the streamline diffusion finite element method (SDFEM). Moreover, for the standard higher-order space supercloseness of the numerical solution w.r.t. an interpolation of the exact solution in the streamline diffusion norm of order p+1/2 is proved.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 631-651 |
Seitenumfang | 21 |
Fachzeitschrift | BIT Numerical Mathematics |
Jahrgang | 51 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Sept. 2011 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 80052298356 |
---|---|
ORCID | /0000-0002-2458-1597/work/142239713 |
Schlagworte
Schlagwörter
- Singular perturbation, Characteristic layers, Exponential layers, Shishkin mesh, SDFEM, Higher order, SHISHKIN MESH, CORNER SINGULARITIES, SUPERCONVERGENCE