Scalable and Low-Latency Data Processing with StreamMapReduce

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Beitragende

Abstract

We present StreamMapReduce, a data processing approach that combines ideas from the popular MapReduce paradigm and recent developments in Event Stream Processing. We adopted the simple and scalable programming model of MapReduce and added continuous, low-latency data processing capabilities previously found only in Event Stream Processing systems. This combination leads to a system that is efficient and scalable, but at the same time, simple from the user's point of view. For latency-critical applications, our system allows a hundred-fold improvement in response time. Notwithstanding, when throughput is considered, our system offers a ten-fold per node throughput increase in comparison to Hadoop. As a result, we show that our approach addresses classes of applications that are not supported by any other existing system and that the MapReduce paradigm is indeed suitable for scalable processing of real-time data streams.

Details

OriginalspracheEnglisch
Seiten48-58
Seitenumfang11
PublikationsstatusVeröffentlicht - 2011
Peer-Review-StatusJa

Konferenz

Titel3rd IEEE International Conference on Cloud Computing Technology and Science
KurztitelCloudCom 2011
Veranstaltungsnummer3
Dauer29 November - 1 Dezember 2011
Webseite
BekanntheitsgradInternationale Veranstaltung
StadtAthen
LandGriechenland

Externe IDs

Scopus 84857167165

Schlagworte

Forschungsprofillinien der TU Dresden

DFG-Fachsystematik nach Fachkollegium

Schlagwörter

  • Programming, Fault Tolerance, Fault tolerant systems, Scalability, Databases, Ral time systems, Instruction sets, data handling, distributed algorithms, event stream processing, complex event processing, MapReduce