Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Louise M Jawerth - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Mahdiye Ijavi - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Martine Ruer - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Shambaditya Saha - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Marcus Jahnel - , Biotechnologisches Zentrum (BIOTEC), Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Anthony A. Hyman - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Frank Jülicher - , Max-Planck-Institut für Physik komplexer Systeme (Autor:in)
  • Elisabeth Fischer-Friedrich - , Biotechnologisches Zentrum (BIOTEC), Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme (Autor:in)

Abstract

An increasing number of proteins with intrinsically disordered domains have been shown to phase separate in buffer to form liquidlike phases. These protein condensates serve as simple models for the investigation of the more complex membraneless organelles in cells. To understand the function of such proteins in cells, the material properties of the condensates they form are important. However, these material properties are not well understood. Here, we develop a novel method based on optical traps to study the frequency-dependent rheology and the surface tension of P-granule protein PGL-3 condensates as a function of salt concentration. We find that PGL-3 droplets are predominantly viscous but also exhibit elastic properties. As the salt concentration is reduced, their elastic modulus, viscosity, and surface tension increase. Our findings show that salt concentration has a strong influence on the rheology and dynamics of protein condensates suggesting an important role of electrostatic interactions for their material properties.

Details

OriginalspracheEnglisch
Aufsatznummer258101
FachzeitschriftPhysical review letters
Jahrgang121
Ausgabenummer25
PublikationsstatusVeröffentlicht - 21 Dez. 2018
Peer-Review-StatusJa

Externe IDs

Scopus 85059176846
ORCID /0000-0002-2433-916X/work/142250433

Schlagworte

Schlagwörter

  • Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins/chemistry, Models, Chemical, Optical Tweezers, RNA-Binding Proteins/chemistry, Rheology/methods, Surface Tension, Viscosity