Sabrina Spellman at SemEval-2023 Task 5: Discover the Shocking Truth Behind this Composite Approach to Clickbait Spoiling!

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

This paper describes an approach to automatically close the knowledge gap of Clickbait-Posts via a transformer model trained for Question-Answering, augmented by a task-specific post-processing step. This was part of the SemEval 2023 Clickbait shared task (Fröbe et al., 2023a) - specifically task 5. We devised strategies to improve the existing model to fit the task better, e.g. with different special models and a post-processor tailored to different inherent challenges of the task. Furthermore, we explored the possibility of expanding the original training data by using strategies from Heuristic Labeling and Semi-Supervised Learning. With those adjustments, we were able to improve the baseline by 9.8 percentage points to a BLEU-4 score of 48.0%.

Details

OriginalspracheEnglisch
TitelProceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
Redakteure/-innenAtul Kr. Ojha, A. Seza Dogruoz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, Elisa Sartori
Herausgeber (Verlag)Association for Computational Linguistics (ACL)
Seiten969-977
Seitenumfang9
ISBN (elektronisch)9781959429999
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Konferenz

Titel17th International Workshop on Semantic Evaluation, SemEval 2023, co-located with the 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Dauer13 - 14 Juli 2023
StadtHybrid, Toronto
LandKanada