Robust lane recognition for autonomous driving
Publikation: Beitrag zu Konferenzen › Paper › Beigetragen › Begutachtung
Beitragende
Details
Originalsprache | Englisch |
---|---|
Seiten | 1-6 |
Seitenumfang | 6 |
Publikationsstatus | Veröffentlicht - 2017 |
Peer-Review-Status | Ja |
Konferenz
Titel | 2017 Conference on Design and Architectures for Signal and Image Processing |
---|---|
Kurztitel | DASIP 2017 |
Dauer | 27 - 29 September 2017 |
Stadt | Dresden |
Land | Deutschland |
Externe IDs
Scopus | 85044295283 |
---|---|
ORCID | /0000-0003-2571-8441/work/142240423 |
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Schlagwörter
- automobiles, image sensors, mobile robots, object detection, traffic cones, road, driving simulator, robust lane recognition, autonomous cars, time 0.55 ms, Cameras, Robustness, Object detection, Automobiles, Roads, Sensors, Viola-Jones, Lane Recognition, road vehicles, traffic engineering computing, Viola-Jones method, emergency situation, high detection rate, Viola-Jones object detection method, robust autonomous driving algorithm, Algorithm design and analysis, Autonomous Driving, Object Detection, Machine Learning