Robust Generation of Channel Distributions with Diffusion Models

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Training neural encoders requires a differentiable channel model for backpropagation. This can be bypassed by approximating the channel distribution using pilot signals. A common method for this is the use of generative adversarial networks (GANs). In this paper, we introduce diffusion models (DMs) for channel generation and propose an efficient training algorithm. Our DMs provide a solution that achieves near-optimal end-to-end symbol error rates (SERs). Importantly, DMs outperform GANs in high signal-to-noise ratio regions. Here, in particular, we explore the trade-off between sample quality and speed. We also show that the right noise scheduling can significantly reduce sampling time with a minor increase in SER.

Details

OriginalspracheEnglisch
TitelICC 2024 - IEEE International Conference on Communications
Redakteure/-innenMatthew Valenti, David Reed, Melissa Torres
Seiten330-335
Seitenumfang6
ISBN (elektronisch)978-1-7281-9054-9
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-1702-9075/work/183166108
Scopus 85202837903
Mendeley 6a697f58-0a0d-3205-a52b-054d9f81a740

Schlagworte

Schlagwörter

  • Channel generation, diffusion model, end-to-end learning, generative networks