Robust endoscopic pose estimation for intraoperative organ-mosaicking

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Daniel Reichard - , Karlsruher Institut für Technologie (Autor:in)
  • Sebastian Bodenstedt - , Karlsruher Institut für Technologie (Autor:in)
  • Stefan Suwelack - , Karlsruher Institut für Technologie (Autor:in)
  • Martin Wagner - , Universität Heidelberg (Autor:in)
  • Hannes Kenngott - , Universität Heidelberg (Autor:in)
  • Beat Peter Müller-Stich - , Universität Heidelberg (Autor:in)
  • Rüdiger Dillmann - , Karlsruher Institut für Technologie (Autor:in)
  • Stefanie Speidel - , Karlsruher Institut für Technologie (Autor:in)

Abstract

The number of minimally invasive procedures is growing every year. These procedures are highly complex and very demanding for the surgeons. It is therefore important to provide intraoperative assistance to alleviate these difficulties. For most computer-assistance systems, like visualizing target structures with augmented reality, a registration step is required to map preoperative data (e.g. CT images) to the ongoing intraoperative scene. Without additional hardware, the (stereo-) endoscope is the prime intraoperative data source and with it, stereo reconstruction methods can be used to obtain 3D models from target structures. To link reconstructed parts from different frames (mosaicking), the endoscope movement has to be known. In this paper, we present a camera tracking method that uses dense depth and feature registration which are combined with a Kalman Filter scheme. It provides a robust position estimation that shows promising results in ex vivo and in silico experiments.

Details

OriginalspracheEnglisch
TitelMedical Imaging 2016
Redakteure/-innenMartin A. Styner, Elsa D. Angelini, Elsa D. Angelini
Herausgeber (Verlag)SPIE - The international society for optics and photonics, Bellingham
ISBN (elektronisch)9781510600195
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Band9784
ISSN1605-7422

Konferenz

TitelMedical Imaging 2016: Image Processing
Dauer1 - 3 März 2016
StadtSan Diego
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-4590-1908/work/163294025

Schlagworte

Schlagwörter

  • Endoscope pose, Endoscopic pose estimation, Feature tracking, Intraoperative registration, Organ-mosaicking, Projective data association