Robust cardinality estimation for subgraph isomorphism queries on property graphs

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Marcus Paradies - , Technische Universität Dresden, SAP Research (Autor:in)
  • Elena Vasilyeva - , Technische Universität Dresden, SAP Research (Autor:in)
  • Adrian Mocan - , SAP Research (Autor:in)
  • Wolfgang Lehner - , Professur für Datenbanken (Autor:in)

Abstract

With an increasing popularity of graph data and graph processing systems, the need of efficient graph processing and graph query optimization becomes more important. Subgraph isomorphism queries, one of the fundamental graph query types, rely on an accurate cardinality estimation of a single edge of a pattern for efficient query processing. State of the art approaches do not consider two important aspects for cardinality estimation of graph queries on property graphs: the existence of nodes with a high outdegree and functional dependencies between attributes. In this paper we focus on these two challenges and integrate the detection of high-outdegree nodes and functional dependency analysis into the cardinality estimation. We evaluate our approach on two real data sets and compare it against a state-of-the-art query optimizer for property graphs as implemented in NEO4J.

Details

OriginalspracheEnglisch
TitelBiomedical Data Management and Graph Online Querying
Redakteure/-innenArijit Khan, Gang Luo, Chunhua Weng, Fusheng Wang, Prasenjit Mitra, Cong Yu
Herausgeber (Verlag)Springer-Verlag
Seiten184-198
Seitenumfang15
ISBN (elektronisch)978-3-319-41576-5
ISBN (Print)978-3-319-41575-8
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9579
ISSN0302-9743

Konferenz

Titel1st International Workshop on Data Management and Analytics for Medicine and Healthcare, DMAH 2015 and Workshop on Big-Graphs Online Querying, Big-O(Q) 2015 held in conjunction with 41st International Conference on Very Large Data Bases, VLDB 2015
Dauer31 August - 4 September 2015
StadtWaikoloa
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0001-8107-2775/work/198592303

Schlagworte