Roadmap for Schottky barrier transistors

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Eva Bestelink - , University of Surrey (Autor:in)
  • Giulio Galderisi - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Patryk Golec - , University of Surrey (Autor:in)
  • Yi Han - , Forschungszentrum Jülich (Autor:in)
  • Benjamin Iniguez - , Universidad Rovira i Virgili (Autor:in)
  • Alexander Kloes - , Technische Hochschule Mittelhessen (Autor:in)
  • Joachim Knoch - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Hiroyuki Matsui - , Yamagata University (Autor:in)
  • Thomas Mikolajick - , Professur für Nanoelektronik, NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Kham M. Niang - , University of Cambridge (Autor:in)
  • Benjamin Richstein - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Mike Schwarz - , Technische Hochschule Mittelhessen (Autor:in)
  • Masiar Sistani - , Technische Universitat Wien (Autor:in)
  • Radu A. Sporea - , University of Surrey (Autor:in)
  • Jens Trommer - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Walter M. Weber - , Technische Universitat Wien (Autor:in)
  • Qing Tai Zhao - , Forschungszentrum Jülich (Autor:in)
  • Laurie E. Calvet - , Centre national de la recherche scientifique (CNRS) (Autor:in)

Abstract

In this roadmap we consider the status and challenges of technologies that use the properties of a rectifying metal-semiconductor interface, known as a Schottky barrier (SB), as an asset for device functionality. We discuss source gated transistors, which allow for excellent electronic characteristics for low power, low frequency environmentally friendly circuits. We also consider reconfigurable field effect transistors. In such devices, two or more independent gate electrodes can be used to program different functionalities at the device level, enabling ultra-secure embedded devices. Both types of transistors can be used for neuromorphic systems, notably by combining them with ferroelectric SB transistors which enable a large number of analog states. At cryogenic temperatures SB transistors can advantageously serve for the control electronics in quantum computing devices. If the source/drain of the metallic contact becomes superconducting, Josephson junctions with a tunable phase can be realized for scalable quantum computing applications. Developing applications using SB devices requires physics-based and compact models that can be used for circuit simulations, which are also discussed. The roadmap reveals that the main challenges for these technologies are improving processing, access to industrial technologies and modeling tools for circuit simulations.

Details

OriginalspracheEnglisch
Aufsatznummer042001
Seitenumfang35
FachzeitschriftNano futures
Jahrgang8
Ausgabenummer4
PublikationsstatusVeröffentlicht - 1 Dez. 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-3814-0378/work/180371984

Schlagworte

Schlagwörter

  • circuits, device, Schottky barrier transistors, semiconductor, transistors