Roadmap for Photonics with 2D Materials
Publikation: Beitrag in Fachzeitschrift › Übersichtsartikel (Review) › Beigetragen › Begutachtung
Beitragende
- Professur für Ultraschnelle Mikroskopie und Photonik (ct.qmat)
- Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien
- ICFO - Institute of Photonic Sciences
- ICREA - Institució Catalana de Recerca i Estudis Avançats
- Columbia University
- Scuola Normale Superiore di Pisa
- University of Pisa
- International Iberian Nanotechnology Laboratory
- Universidade do Minho
- University of Southern Denmark
- Purdue University
- Stony Brook University
- Brookhaven National Laboratory
- Catalan Institute of Nanoscience and Nanotechnology
- Consejo Superior de Investigaciones Científicas (CSIC)
- Czech Academy of Sciences
- Université Paris-Sud
- Technische Universität München
- University of Michigan, Ann Arbor
- Carl von Ossietzky Universität Oldenburg
- City University of New York
- Westfälische Wilhelms-Universität Münster
- Technical University of Denmark
- University of Georgia
- Pennsylvania State University
- Northwestern University
- Stanford University
- SLAC National Accelerator Laboratory
- ETH Zürich
- Universität Basel
- Harvard University
- NTT Research, Inc.
- Polytechnic University of Milan
Abstract
Triggered by advances in atomic-layer exfoliation and growth techniques, along with the identification of a wide range of extraordinary physical properties in self-standing films consisting of one or a few atomic layers, two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), and other van der Waals (vdW) crystals now constitute a broad research field expanding in multiple directions through the combination of layer stacking and twisting, nanofabrication, surface-science methods, and integration into nanostructured environments. Photonics encompasses a multidisciplinary subset of those directions, where 2D materials contribute remarkable nonlinearities, long-lived and ultraconfined polaritons, strong excitons, topological and chiral effects, susceptibility to external stimuli, accessibility, robustness, and a completely new range of photonic materials based on layer stacking, gating, and the formation of moiré patterns. These properties are being leveraged to develop applications in electro-optical modulation, light emission and detection, imaging and metasurfaces, integrated optics, sensing, and quantum physics across a broad spectral range extending from the far-infrared to the ultraviolet, as well as enabling hybridization with spin and momentum textures of electronic band structures and magnetic degrees of freedom. The rapid expansion of photonics with 2D materials as a dynamic research arena is yielding breakthroughs, which this Roadmap summarizes while identifying challenges and opportunities for future goals and how to meet them through a wide collection of topical sections prepared by leading practitioners.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 3961-4095 |
| Seitenumfang | 135 |
| Fachzeitschrift | ACS photonics |
| Jahrgang | 12 |
| Ausgabenummer | 8 |
| Publikationsstatus | Veröffentlicht - 20 Aug. 2025 |
| Peer-Review-Status | Ja |
Externe IDs
| ORCID | /0000-0002-9213-2777/work/196666300 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- 2D polaritons, electro-optical modulation, excitons in van der Waals materials, layer stacking and moiré photonics, nonlinear optics, photonics with 2D materials, quantum photonics