Risk-Averse Optimization of Total Rewards in Markovian Models Using Deviation Measures

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

This paper addresses objectives tailored to the risk-averse optimization of accumulated rewards in Markov decision processes (MDPs). The studied objectives require maximizing the expected value of the accumulated rewards minus a penalty factor times a deviation measure of the resulting distribution of rewards. Using the variance in this penalty mechanism leads to the variance-penalized expectation (VPE) for which it is known that optimal schedulers have to minimize future expected rewards when a high amount of rewards has been accumulated. This behavior is undesirable as risk-averse behavior should keep the probability of particularly low outcomes low, but not discourage the accumulation of additional rewards on already good executions. The paper investigates the semi-variance, which only takes outcomes below the expected value into account, the mean absolute deviation (MAD), and the semi-MAD as alternative deviation measures. Furthermore, a penalty mechanism that penalizes outcomes below a fixed threshold is studied. For all of these objectives, the properties of optimal schedulers are specified and in particular the question whether these objectives overcome the problem observed for the VPE is answered. Further, the resulting algorithmic problems on MDPs and Markov chains are investigated.

Details

OriginalspracheEnglisch
Titel35th International Conference on Concurrency Theory (CONCUR 2024)
Redakteure/-innenRupak Majumdar, Alexandra Silva
Herausgeber (Verlag)Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Seiten9:1-9:20
Seitenumfang20
ISBN (elektronisch)978-3-95977-339-3
PublikationsstatusVeröffentlicht - 29 Aug. 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheLeibniz international proceedings in informatics : LIPIcs
ISSN1868-8969

Konferenz

Titel35th International Conference on Concurrency Theory
KurztitelCONCUR 2024
Veranstaltungsnummer35
Beschreibungpart of the CONFEST 2024 conference
Dauer9 - 13 September 2024
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtBest Western Plus Village Park Inn
StadtCalgary
LandKanada

Externe IDs

Scopus 85203560367
ORCID /0000-0002-5321-9343/work/185738302
ORCID /0000-0003-4829-0476/work/185740143

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • deviation measures, Markov decision processes, risk-aversion, total reward