Reversible pH-Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Celina Love - , Exzellenzcluster PoL: Physik des Lebens, Professur für BioNano-Werkzeuge, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Jan Steinkühler - , Max Planck Institute of Colloids and Interfaces (Autor:in)
  • David T. Gonzales - , Exzellenzcluster PoL: Physik des Lebens, Professur für Biotechnologische Genomik, Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Naresh Yandrapalli - , Max Planck Institute of Colloids and Interfaces (Autor:in)
  • Tom Robinson - , Max Planck Institute of Colloids and Interfaces (Autor:in)
  • Rumiana Dimova - , Max Planck Institute of Colloids and Interfaces (Autor:in)
  • T. Y.Dora Tang - , Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität Dresden, Exzellenzcluster PoL: Physik des Lebens (Autor:in)

Abstract

In situ, reversible coacervate formation within lipid vesicles represents a key step in the development of responsive synthetic cellular models. Herein, we exploit the pH responsiveness of a polycation above and below its pKa, to drive liquid–liquid phase separation, to form single coacervate droplets within lipid vesicles. The process is completely reversible as coacervate droplets can be disassembled by increasing the pH above the pKa. We further show that pH-triggered coacervation in the presence of low concentrations of enzymes activates dormant enzyme reactions by increasing the local concentration within the coacervate droplets and changing the local environment around the enzyme. In conclusion, this work establishes a tunable, pH responsive, enzymatically active multi-compartment synthetic cell. The system is readily transferred into microfluidics, making it a robust model for addressing general questions in biology, such as the role of phase separation and its effect on enzymatic reactions using a bottom-up synthetic biology approach.

Details

OriginalspracheEnglisch
Seiten (von - bis)5950-5957
Seitenumfang8
FachzeitschriftAngewandte Chemie - International Edition
Jahrgang59
Ausgabenummer15
PublikationsstatusVeröffentlicht - 6 Apr. 2020
Peer-Review-StatusJa

Externe IDs

PubMed 31943629

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • coacervates, liquid–liquid phase separation, microfluidics, pH responsive, protocells