Revealing networks from dynamics: An introduction

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Marc Timme - , Max Planck Institute for Dynamics and Self-Organization, Georg-August-Universität Göttingen, Bernstein Center for Computational Neuroscience Göttingen (Autor:in)
  • Jose Casadiego - , Max Planck Institute for Dynamics and Self-Organization (Autor:in)

Abstract

What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.

Details

OriginalspracheEnglisch
Aufsatznummer343001
FachzeitschriftJournal of Physics A: Mathematical and Theoretical
Jahrgang47
Ausgabenummer34
PublikationsstatusVeröffentlicht - 11 Aug. 2014
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0002-5956-3137/work/142242473

Schlagworte

Schlagwörter

  • complex networks, effective connectivity, functional connectivity, network dynamics, network inference, network reconstruction, network topology, structural connectivity, synchrony