Retrolive: Analysis of relational retrofitted word embeddings

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Text values are valuable information in relational database systems for analysis and machine learning (ML) tasks. Since ML techniques depend on numerical input representations, word embeddings are increasingly utilized to convert symbolic representations such as text into meaningful numbers. However, those models do not incorporate the context-specific semantics of text values in the database. To significantly improve the representation of text values occurring in DBMS, we propose a novel retrofitting approach called Retro which considers both, the semantics of the word embedding and the relational schema. Based on this, we developed RetroLive, an interactive system, that allows exploring how the retrofitted embeddings improve the performance for various ML and integration tasks. Moreover, the demo includes several interactive visualizations to explore the characteristics of the adapted vectors and their connection to the relational database.

Details

OriginalspracheEnglisch
TitelAdvances in Database Technology - EDBT 2020
Redakteure/-innenAngela Bonifati, Yongluan Zhou, Marcos Antonio Vaz Salles, Alexander Bohm, Dan Olteanu, George Fletcher, Arijit Khan, Bin Yang
Herausgeber (Verlag)OpenProceedings.org
Seiten607-610
Seitenumfang4
ISBN (elektronisch)9783893180837
PublikationsstatusVeröffentlicht - 2020
Peer-Review-StatusJa

Publikationsreihe

ReiheAdvances in database technology : proceedings / EDBT ...
Band2020-March

Konferenz

Titel23rd International Conference on Extending Database Technology, EDBT 2020
Dauer30 März - 2 April 2020
StadtCopenhagen
LandDänemark

Externe IDs

Scopus 85084175541
ORCID /0000-0001-8107-2775/work/142253450

Schlagworte