Reticulated organic photovoltaics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Theanne Schiros - , Columbia University (Autor:in)
  • Stefan Mannsfeld - , Stanford University, SLAC National Accelerator Laboratory (Autor:in)
  • Chien Yang Chiu - , Columbia University (Autor:in)
  • Kevin G. Yager - , Brookhaven National Laboratory (Autor:in)
  • James Ciston - , Brookhaven National Laboratory (Autor:in)
  • Alon A. Gorodetsky - , Columbia University, University of California at Irvine (Autor:in)
  • Matteo Palma - , Columbia University (Autor:in)
  • Zac Bullard - , Columbia University (Autor:in)
  • Theodore Kramer - , Columbia University (Autor:in)
  • Dean Delongchamp - , National Institute of Standards and Technology (NIST) (Autor:in)
  • Daniel Fischer - , National Institute of Standards and Technology (NIST) (Autor:in)
  • Ioannis Kymissis - , Columbia University (Autor:in)
  • Michael F. Toney - , Stanford University (Autor:in)
  • Colin Nuckolls - , Columbia University (Autor:in)

Abstract

This paper shows how the self-assembled interlocking of two nanostructured materials can lead to increased photovoltaic performance. A detailed picture of the reticulated 6-DBTTC/C 60 organic photovoltaic (OPV) heterojunction, which produces devices approaching the theoretical maximum for these materials, is presented from near edge X-ray absorption spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray diffraction (GIXD) and transmission electron microscopy (TEM). The complementary suite of techniques shows how self-assembly can be exploited to engineer the interface and morphology between the cables of donor (6-DBTTC) material and a polycrystalline acceptor (C 60) to create an interpenetrating network of pure phases expected to be optimal for OPV device design. Moreover, we find that there is also a structural and electronic interaction between the two materials at the molecular interface. The data show how molecular self-assembly can facilitate 3-D nanostructured photovoltaic cells that are made with the simplicity and control of bilayer device fabrication. The significant improvement in photovoltaic performance of the reticulated heterojunction over the flat analog highlights the potential of these strategies to improve the efficiency of organic solar cells.

Details

OriginalspracheEnglisch
Seiten (von - bis)1167-1173
Seitenumfang7
FachzeitschriftAdvanced functional materials
Jahrgang22
Ausgabenummer6
PublikationsstatusVeröffentlicht - 21 März 2012
Peer-Review-StatusJa
Extern publiziertJa

Schlagworte

Forschungsprofillinien der TU Dresden

Ziele für nachhaltige Entwicklung

Schlagwörter

  • microstructure, nanostructures, organic electronics, photovoltaics, self-assembly