Representing data quality for streaming and static data

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Anja Klein - , SAP Research (Autor:in)
  • Hong Hai Do - , SAP Research (Autor:in)
  • Gregor Hackenbroich - , SAP Research (Autor:in)
  • Marcel Karnstedt - , Technische Universitat Ilmenau (Autor:in)
  • Wolfgang Lehner - , Professur für Datenbanken (Autor:in)

Abstract

In smart item environments, multitude of sensors are applied to capture data about product conditions and usage to guide business decisions as well as production automation processes. A big issue in this application area is posed by the restricted quality of sensor data due to limited sensor precision as well as sensor failures and malfunctions. Decisions derived on incorrect or misleading sensor data are likely to be faulty. The issue of how to efficiently provide applications with information about data quality (DQ) is still an open research problem. In this paper, we present a flexible model for the efficient transfer and management of data quality for streaming as well as static data. We propose a data stream metamodel to allow for the propagation of data quality from the sensors up to the respective business application without a significant overhead of data. Furthermore, we present the extension of the traditional RDBMS metamodel to permit the persistent storage of data quality information in a relational database. Finally, we demonstrate a data quality metadata mapping to close the gap between the streaming environment and the target database. Our solution maintains a flexible number of DQ dimensions and supports applications directly consuming streaming data or processing data filed in a persistent database.

Details

OriginalspracheEnglisch
TitelWorkshops in Conjunction with the International Conference on Data Engineering - ICDE' 07
Seiten3-10
Seitenumfang8
PublikationsstatusVeröffentlicht - 2007
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings - International Conference on Data Engineering
ISSN1084-4627

Konferenz

TitelWorkshops in Conjunction with the 23rd International Conference on Data Engineering
KurztitelICDE 2007
Dauer15 - 20 April 2007
StadtIstanbul
LandTürkei

Externe IDs

ORCID /0000-0001-8107-2775/work/200630403

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis