Reorganization of Lipid Diffusion by Myelin Basic Protein as Revealed by STED Nanoscopy

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Olena Steshenko - , Max Planck Institute of Experimental Medicine (Autor:in)
  • Débora M. Andrade - , Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute), University of Oxford (Autor:in)
  • Alf Honigmann - , Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute), Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Veronika Mueller - , Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute) (Autor:in)
  • Falk Schneider - , University of Oxford (Autor:in)
  • Erdinc Sezgin - , University of Oxford (Autor:in)
  • Stefan W. Hell - , Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute) (Autor:in)
  • Mikael Simons - , Max Planck Institute of Experimental Medicine, Technische Universität München (Autor:in)
  • Christian Eggeling - , Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute), University of Oxford (Autor:in)

Abstract

Myelin is a multilayered membrane that ensheathes axonal fibers in the vertebrate nervous system, allowing fast propagation of nerve action potentials. It contains densely packed lipids, lacks an actin-based cytocortex, and requires myelin basic protein (MBP) as its major structural component. This protein is the basic constituent of the proteinaceous meshwork that is localized between adjacent cytoplasmic membranes of the myelin sheath. Yet, it is not clear how MBP influences the organization and dynamics of the lipid constituents of myelin. Here, we used optical stimulated emission depletion super-resolution microscopy in combination with fluorescence correlation spectroscopy to assess the characteristics of diffusion of different fluorescent lipid analogs in myelin membrane sheets of cultured oligodendrocytes and in micrometer-sized domains that were induced by MBP in live epithelial PtK2 cells. Lipid diffusion was significantly faster and less anomalous both in oligodendrocytes and inside the MBP-rich domains of PtK2 cells compared with undisturbed live PtK2 cells. Our data show that MBP reorganizes lipid diffusion, possibly by preventing the buildup of an actin-based cytocortex and by preventing most membrane proteins from entering the myelin sheath region. Yet, in contrast to myelin sheets in oligodendrocytes, the MBP-induced domains in epithelial PtK2 cells demonstrate no change in lipid order, indicating that segregation of long-chain lipids into myelin sheets is a process specific to oligodendrocytes.

Details

OriginalspracheEnglisch
Seiten (von - bis)2441-2450
Seitenumfang10
FachzeitschriftBiophysical journal
Jahrgang110
Ausgabenummer11
PublikationsstatusVeröffentlicht - 7 Juni 2016
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 27276262
ORCID /0000-0003-0475-3790/work/161889545

Schlagworte

ASJC Scopus Sachgebiete