Remotely Controlled Electrochemical Degradation of Metallic Implants

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Boris Rivkin - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Farzin Akbar - , Mikro- und Nano-Biosysteme (FoG), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Martin Otto - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Technische Universität Bergakademie Freiberg (Autor:in)
  • Lukas Beyer - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Technische Universität Bergakademie Freiberg (Autor:in)
  • Birgit Paul - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Konrad Kosiba - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Tobias Gustmann - , Professur für Werkstoffsynthese und Analytik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Julia Hufenbach - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Mariana Medina-Sánchez - , Mikro- und Nano-Biosysteme (FoG), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Ikerbasque Basque Foundation for Science, CIC nanoGUNE (Autor:in)

Abstract

Biodegradable medical implants promise to benefit patients by eliminating risks and discomfort associated with permanent implantation or surgical removal. The time until full resorption is largely determined by the implant's material composition, geometric design, and surface properties. Implants with a fixed residence time, however, cannot account for the needs of individual patients, thereby imposing limits on personalization. Here, an active Fe-based implant system is reported whose biodegradation is controlled remotely and in situ. This is achieved by incorporating a galvanic cell within the implant. An external and wireless signal is used to activate the on-board electronic circuit that controls the corrosion current between the implant body and an integrated counter electrode. This configuration leads to the accelerated degradation of the implant and allows to harvest electrochemical energy that is naturally released by corrosion. In this study, the electrochemical properties of the Fe-30Mn-1C/Pt galvanic cell model system is first investigated and high-resolution X-ray microcomputed tomography is used to evaluate the galvanic degradation of stent structures. Subsequently, a centimeter-sized active implant prototype is assembled with conventional electronic components and the remotely controlled corrosion is tested in vitro. Furthermore, strategies toward the miniaturization and full biodegradability of this system are presented.

Details

OriginalspracheEnglisch
Aufsatznummer2307742
Seitenumfang14
FachzeitschriftSmall
Jahrgang20 (2024)
Ausgabenummer28
Frühes Online-Datum7 Feb. 2024
PublikationsstatusVeröffentlicht - Juli 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85184453064
Mendeley c6b7ce96-d688-312e-9bba-648a87c8615f