Reliability assessment for traffic data

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Dung Ying Lin - , National Cheng Kung University (Autor:in)
  • Stephen Boyles - , University of Wyoming (Autor:in)
  • Varunraj Valsaraj - , Logistics Engineer (Autor:in)
  • S. Travis Waller - , University of Texas at Austin (Autor:in)

Abstract

Given the vast amounts of data automatically collected by traffic detectors, identifying erroneous data is an important and challenging issue. In this paper, we develop a fuzzy logic approach for quantifying the reliability of data obtained from traffic detectors. Previous researchers have proposed multiple criteria for determining erroneous data; broadly speaking, these approaches either consider fundamental consistency (is the data physically plausible?), network consistency (is the data consistent with observations at nearby detectors?), and historical consistency (is the data plausible given past observations at this location?). This paper proposes a classifier incorporating all of these criteria, applying fuzzy logic to integrate these three separate assessments. An example application is given, utilizing data collected in the Dallas, TX, region.

Details

OriginalspracheEnglisch
Seiten (von - bis)285-297
Seitenumfang13
Fachzeitschrift Journal of the Chinese Institute of Engineers : JCIE
Jahrgang35
Ausgabenummer3
PublikationsstatusVeröffentlicht - Apr. 2012
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0002-2939-2090/work/141543873

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Fuzzy logic, Traffic detector, Transportation data reliability