Reinforce Security: A Model-Free Approach towards Secure Wiretap Coding

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Rick Fritschek - , Freie Universität (FU) Berlin (Autor:in)
  • Rafael F. Schaefer - , Universität Siegen (Autor:in)
  • Gerhard Wunder - , Freie Universität (FU) Berlin (Autor:in)

Abstract

The use of deep learning-based techniques for approximating secure encoding functions has attracted considerable interest in wireless communications due to impressive results obtained for general coding and decoding tasks for wireless communication systems. Of particular importance is the development of model-free techniques that work without knowledge about the underlying channel. Such techniques utilize for example generative adversarial networks to estimate and model the conditional channel distribution, mutual information estimation as a reward function, or reinforcement learning. In this paper, the approach of reinforcement learning is studied and, in particular, the policy gradient method for a model-free approach of neural network-based secure encoding is investigated. Previously developed techniques for enforcing a certain co-set structure on the encoding process can be combined with recent reinforcement learning approaches. This new approach is evaluated by extensive simulations, and it is demonstrated that the resulting decoding performance of an eavesdropper is capped at a certain error level.

Details

OriginalspracheEnglisch
TitelICC 2021 - IEEE International Conference on Communications, Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1-6
ISBN (elektronisch)978-1-7281-7122-7
PublikationsstatusVeröffentlicht - Juni 2021
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIEEE International Conference on Communications (ICC)
ISSN1550-3607

Konferenz

Titel2021 IEEE International Conference on Communications, ICC 2021
Dauer14 - 23 Juni 2021
StadtVirtual, Online
LandKanada

Externe IDs

ORCID /0000-0002-1702-9075/work/165878256