Regulating electrode/electrolyte interfacial chemistry enables 4.6 V ultra-stable fast charging of commercial LiCoO2

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Anping Zhang - , CAS - Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences (Autor:in)
  • Zhihong Bi - , CAS - Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences (Autor:in)
  • Gongrui Wang - , CAS - Dalian Institute of Chemical Physics (Autor:in)
  • Shihao Liao - , CAS - Dalian Institute of Chemical Physics (Autor:in)
  • Pratteek Das - , CAS - Dalian Institute of Chemical Physics (Autor:in)
  • Hu Lin - , CAS - Dalian Institute of Chemical Physics (Autor:in)
  • Mingrun Li - , CAS - Dalian Institute of Chemical Physics (Autor:in)
  • Yan Yu - , University of Science and Technology of China (USTC) (Autor:in)
  • Xinliang Feng - , Professur für Molekulare Funktionsmaterialien (cfaed), Max Planck Institute of Microstructure Physics (Autor:in)
  • Xinhe Bao - , CAS - Dalian Institute of Chemical Physics (Autor:in)
  • Zhong Shuai Wu - , CAS - Dalian Institute of Chemical Physics (Autor:in)

Abstract

The difficulty of achieving fast-charging high-voltage lithium-ion batteries arises from severely unstable electrode-electrolyte interfaces with sluggish kinetics. Here we overcome this challenge by developing a “cocktail electrolyte” enabling commercial LiCoO2 with ultra-stable fast-charging in a wide-temperature range. Unlike commercial carbonate electrolytes, our electrolyte synergistically contributes to fast ion transport and robust electrode/electrolyte interphases, which suppresses interfacial side reactions, accelerates interfacial reaction kinetics on the cathode side, and prevents Li-dendrites on anodes even at extremely high-rates (3C and 5C). Consequently, the Li||LiCoO2 coin cell displays ultra-high stability both at a fast-charging rate (5C, 73.2% retention after 1000 cycles) and under extreme conditions (−20 and 45 °C), far beyond the state-of-the-art electrolytes. Moreover, we show the practical and general applicability of our electrolyte through the stable operation of a graphite||LiCoO2 pouch cell (72.1% retention after 2000 cycles) and other advanced high-Ni or Co-free cathodes. This work proposes deep insights and a practical strategy for high-energy-density and fast-charging batteries.

Details

OriginalspracheEnglisch
Seiten (von - bis)3021-3031
Seitenumfang11
FachzeitschriftEnergy and Environmental Science
Jahrgang17(2024)
Ausgabenummer9
PublikationsstatusVeröffentlicht - 7 März 2024
Peer-Review-StatusJa