Refined Commonsense Knowledge From Large-Scale Web Contents

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Tuan Phong Nguyen - , Max-Planck-Institut für Informatik (Autor:in)
  • Simon Razniewski - , Max-Planck-Institut für Informatik (Autor:in)
  • Julien Romero - , Institut Mines-Télécom (Autor:in)
  • Gerhard Weikum - , Max-Planck-Institut für Informatik (Autor:in)

Abstract

Commonsense knowledge (CSK) about concepts and their properties is helpful for AI applications. Prior works, such as ConceptNet, have compiled large CSK collections. However, they are restricted in their expressiveness to subject-predicate-object (SPO) triples with simple concepts for S and strings for P and O. This paper presents a method called Ascent++ to automatically build a large-scale knowledge base (KB) of CSK assertions, with refined expressiveness and both better precision and recall than prior works. Ascent++ goes beyond SPO triples by capturing composite concepts with subgroups and aspects, and by refining assertions with semantic facets. The latter is essential to express the temporal and spatial validity of assertions and further qualifiers. Furthermore, Ascent++ combines open information extraction (OpenIE) with judicious cleaning and ranking by typicality and saliency scores. For high coverage, our method taps into the large-scale crawl C4 with broad web contents. The evaluation with human judgments shows the superior quality of the Ascent++ KB, and an extrinsic evaluation for QA-support tasks underlines the benefits of Ascent++. A web interface, data, and code can be accessed at https://ascentpp.mpi-inf.mpg.de/.

Details

OriginalspracheEnglisch
Seiten (von - bis)8431-8447
Seitenumfang17
FachzeitschriftIEEE transactions on knowledge and data engineering
Jahrgang35
Ausgabenummer8
PublikationsstatusVeröffentlicht - 1 Aug. 2023
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0002-5410-218X/work/185318188

Schlagworte

Schlagwörter

  • Commonsense knowledge, knowledge base construction