Reducts of finitely bounded homogeneous structures, and lifting tractability from finite-domain constraint satisfaction
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Many natural decision problems can be formulated as constraint satisfaction problems for reducts of finitely bounded homogeneous structures. This class of problems is a large generalisation of the class of CSPs over finite domains. Our first result is a general polynomial-time reduction from such infinite-domain CSPs to finite-domain CSPs. We use this reduction to obtain new powerful polynomial-time tractability conditions that can be expressed in terms of topological polymorphism clones. Moreover, we study the subclass C of CSPs for structures that are first-order definable over equality with parameters. Also this class C properly extends the class of all finite-domain CSPs. We show that the tractability conjecture for reducts of finitely bounded homogeneous structures is for C equivalent to the finite-domain tractability conjecture.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science, LICS 2016 |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| Seiten | 623-632 |
| Seitenumfang | 10 |
| ISBN (elektronisch) | 9781450343916 |
| Publikationsstatus | Veröffentlicht - 5 Juli 2016 |
| Peer-Review-Status | Ja |
Konferenz
| Titel | 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016 |
|---|---|
| Dauer | 5 - 8 Juli 2016 |
| Stadt | New York |
| Land | USA/Vereinigte Staaten |
Externe IDs
| ORCID | /0000-0001-8228-3611/work/142241101 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- abstract tractability conditions, canonical functions, constraint satisfaction problems