Reconstructing axial progenitor field dynamics in mouse stem cell-derived embryoids

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Adriano Bolondi - , Max Planck Institut für Molekulare Genetik (Autor:in)
  • Benjamin K. Law - , Princeton University (Autor:in)
  • Helene Kretzmer - , Max Planck Institut für Molekulare Genetik (Autor:in)
  • Seher Ipek Gassaloglu - , Max Planck Institut für Molekulare Genetik, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • René Buschow - , Max Planck Institut für Molekulare Genetik (Autor:in)
  • Christina Riemenschneider - , Max Planck Institut für Molekulare Genetik (Autor:in)
  • Dian Yang - , Columbia University (Autor:in)
  • Maria Walther - , Max Planck Institut für Molekulare Genetik (Autor:in)
  • Jesse V. Veenvliet - , Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität Dresden, Zentrum für Systembiologie Dresden (CSBD), Exzellenzcluster PoL: Physik des Lebens (Autor:in)
  • Alexander Meissner - , Max Planck Institut für Molekulare Genetik, Freie Universität (FU) Berlin (Autor:in)
  • Zachary D. Smith - , Yale University (Autor:in)
  • Michelle M. Chan - , Princeton University (Autor:in)

Abstract

Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.

Details

OriginalspracheEnglisch
Seiten (von - bis)1489-1505.e14
FachzeitschriftDevelopmental cell
Jahrgang59
Ausgabenummer12
PublikationsstatusVeröffentlicht - 17 Juni 2024
Peer-Review-StatusJa

Externe IDs

PubMed 38579718

Schlagworte

Schlagwörter

  • cell plasticity, embryonic development, lineage tracing, molecular recording, morphogenesis, neuro-mesodermal progenitor dynamics, single-cell phylogenies, stem cell embryoids, Somites/cytology, Embryonic Development, Mouse Embryonic Stem Cells/cytology, Cell Lineage, Animals, Gene Expression Regulation, Developmental, Mice, Cell Differentiation, Mesoderm/cytology