Recognition of surgical skills using hidden markov models

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Stefanie Speidel - , Nationales Centrum für Tumorerkrankungen Dresden, Karlsruher Institut für Technologie (Autor:in)
  • Tom Zentek - , Karlsruher Institut für Technologie (Autor:in)
  • Gunther Sudra - , Karlsruher Institut für Technologie (Autor:in)
  • Tobias Gehrig - , Universität Heidelberg (Autor:in)
  • Beat Peter Müller-Stich - , Universität Heidelberg (Autor:in)
  • Carsten Gutt - , Universität Heidelberg (Autor:in)
  • Rüdiger Dillmann - , Karlsruher Institut für Technologie (Autor:in)

Abstract

Minimally invasive surgery is a highly complex medical discipline and can be regarded as a major breakthrough in surgical technique. A minimally invasive intervention requires enhanced motor skills to deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To recognize and analyze the current situation for context-aware assistance, we need intraoperative sensor data and a model of the intervention. Characteristics of a situation are the performed activity, the used instruments, the surgical objects and the anatomical structures. Important information about the surgical activity can be acquired by recognizing the surgical gesture performed. Surgical gestures in minimally invasive surgery like cutting, knot-tying or suturing are here referred to as surgical skills. We use the motion data from the endoscopic instruments to classify and analyze the performed skill and even use it for skill evaluation in a training scenario. The system uses Hidden Markov Models (HMM) to model and recognize a specific surgical skill like knot-tying or suturing with an average recognition rate of 92%.

Details

OriginalspracheEnglisch
TitelMedical Imaging 2009
PublikationsstatusVeröffentlicht - 2009
Peer-Review-StatusJa

Publikationsreihe

ReiheProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Band7261
ISSN1605-7422

Konferenz

TitelMedical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging
Dauer8 - 10 Februar 2009
StadtLake Buena Vista, FL
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-4590-1908/work/163294178

Schlagworte

Schlagwörter

  • Endoscopic procedures, Localization and tracking technologies, Modeling