RECLAIM-A retrospective, multicenter observational study aimed at enabling the development of artificial intelligence-driven prognostic models for disease progression in multiple sclerosis

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jelle Praet - , icometrix (Autor:in)
  • Lina Anderhalten - , Experimental and Clinical Research Center (ECRC) (Autor:in)
  • Giancarlo Comi - , Vita-Salute San Raffaele University (Autor:in)
  • Dana Horakova - , Universitätsklinikum Prag (Autor:in)
  • Tjalf Ziemssen - , Klinik und Poliklinik für Neurologie (Autor:in)
  • Patrick Vermersch - , Université de Lille (Autor:in)
  • Carsten Lukas - , Katholisches Klinikum Bochum gGmbH (Autor:in)
  • Koen Van Leemput - , Aalto University (Autor:in)
  • Marjan Steppe - , European Charcot Foundation (Autor:in)
  • Noemí Manero - , SYNAPSE Research Management Partners S.L. (Autor:in)
  • Ella Kadas - , Nocturne GmbH (Autor:in)
  • Alexis Bernard - , AB Science (Autor:in)
  • Jean van Rampelbergh - , Imcyse SA (Autor:in)
  • Erik de Boer - , Bristol-Myers Squibb (Autor:in)
  • Vera Zingler - , F. Hoffmann-La Roche AG (Autor:in)
  • Dirk Smeets - , icometrix (Autor:in)
  • Annemie Ribbens - , icometrix (Autor:in)
  • Friedemann Paul - , Charité – Universitätsmedizin Berlin (Autor:in)

Abstract

Multiple sclerosis (MS) is characterized by a progressive worsening of disability over time. As many regulatory-cleared disease-modifying treatments aiming to slow down this progression are now available, a clear need has arisen for a personalized and data-driven approach to treatment optimization in order to more efficiently slow down disease progression and eventually, progressive disability worsening. This strongly depends on the availability of biomarkers that can detect and differentiate between the different forms of disease worsening, and on predictive models to estimate the disease trajectory for each patient under certain treatment conditions. To this end, we here describe a multicenter, retrospective, observational study, aimed at setting up a harmonized database to allow the development, training, optimization, and validation of such novel biomarkers and AI-based decision models. Additionally, the data will be used to develop the tools required to better monitor this progression and to generate further insights on disease worsening and progression, patient prognosis, treatment decisions and responses, and patient profiles of patients with MS.

Details

OriginalspracheEnglisch
Aufsatznummer1557947
FachzeitschriftFrontiers in neurology
Jahrgang16
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Externe IDs

PubMedCentral PMC12124479
ORCID /0000-0001-8799-8202/work/186184155
unpaywall 10.3389/fneur.2025.1557947
Mendeley c9a4303d-55f6-34d8-9f41-4f791ec1525b
Scopus 105007654664

Schlagworte

Schlagwörter

  • clinical trial, AI model, data, multiple sclerosis, disease worsening, real-world data, biomarker, observational study