RecipeGM: A Hierarchical Recipe Generation Model
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
This paper demonstrates the application of hierarchical convolutional neural networks using self-Attention mechanisms for the task of generating recipes given a set of ingredients the recipe should contain. We compare this model, RECIPEGM, to an LSTM baseline and RecipeGPT using several metrics and show that our model is able to outperform even RecipeGPT in some cases. Furthermore, this work discusses suitable evaluation techniques for recipe generation and highlights weak points of some current in use metrics.
Details
Originalsprache | Englisch |
---|---|
Titel | Proceedings - 2021 IEEE 37th International Conference on Data Engineering Workshops, ICDEW 2021 |
Herausgeber (Verlag) | IEEE, New York [u. a.] |
Seiten | 24-29 |
Seitenumfang | 6 |
ISBN (elektronisch) | 9781665448901 |
Publikationsstatus | Veröffentlicht - Apr. 2021 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW) |
---|
Konferenz
Titel | 37th IEEE International Conference on Data Engineering Workshops, ICDEW 2021 |
---|---|
Dauer | 19 - 22 April 2021 |
Stadt | Virtual, Chania |
Land | Griechenland |
Externe IDs
Scopus | 85107651640 |
---|---|
ORCID | /0000-0001-8107-2775/work/142253438 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- food recipe, natural language generation (NLP), neural network, quality metrics, recipe generation, sequence-To-sequence modeling