RecipeGM: A Hierarchical Recipe Generation Model

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

This paper demonstrates the application of hierarchical convolutional neural networks using self-Attention mechanisms for the task of generating recipes given a set of ingredients the recipe should contain. We compare this model, RECIPEGM, to an LSTM baseline and RecipeGPT using several metrics and show that our model is able to outperform even RecipeGPT in some cases. Furthermore, this work discusses suitable evaluation techniques for recipe generation and highlights weak points of some current in use metrics.

Details

OriginalspracheEnglisch
TitelProceedings - 2021 IEEE 37th International Conference on Data Engineering Workshops, ICDEW 2021
Herausgeber (Verlag)IEEE, New York [u. a.]
Seiten24-29
Seitenumfang6
ISBN (elektronisch)9781665448901
PublikationsstatusVeröffentlicht - Apr. 2021
Peer-Review-StatusJa

Publikationsreihe

Reihe2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW)

Konferenz

Titel37th IEEE International Conference on Data Engineering Workshops, ICDEW 2021
Dauer19 - 22 April 2021
StadtVirtual, Chania
LandGriechenland

Externe IDs

Scopus 85107651640
ORCID /0000-0001-8107-2775/work/142253438

Schlagworte

Schlagwörter

  • food recipe, natural language generation (NLP), neural network, quality metrics, recipe generation, sequence-To-sequence modeling