Recent results on the prediction of EEG signals in epilepsy by discrete-time cellular neural networks (DTCNN)
Publikation: Beitrag in Fachzeitschrift › Konferenzartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In different investigations it has been shown that nonlinear signal processing can contribute to the task of finding precursors of impending epileptic seizures in the case of a focal epilepsy [6]. Various approaches to this feature extraction problem have been made including Volterra-Systems [2],Wavelet-Analysis and Cellular Neural Networks (CNN) [3]. This paper gives a detailed analysis of a recently proposed prediction [1] algorithm based on multi-layer delay-time DTCNN. The aim of this contribution is to reduce the high computation complexity caused by the permanent application of a supervised optimization procedure for successive data segments of an EEG recording. Thereby the prediction algorithm is studied by using different optimization procedures, different network topologies and different template symmetries.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | 1465811 |
| Seiten (von - bis) | 5218-5221 |
| Seitenumfang | 4 |
| Fachzeitschrift | Proceedings - IEEE International Symposium on Circuits and Systems |
| Publikationsstatus | Veröffentlicht - 2005 |
| Peer-Review-Status | Ja |
| Extern publiziert | Ja |
Konferenz
| Titel | IEEE International Symposium on Circuits and Systems 2005 |
|---|---|
| Kurztitel | ISCAS 2005 |
| Dauer | 23 - 26 Mai 2005 |
| Webseite | |
| Bekanntheitsgrad | Internationale Veranstaltung |
| Ort | Kobe, Japan |
| Stadt | Kobe |
| Land | Japan |
Externe IDs
| ORCID | /0000-0001-7436-0103/work/173513962 |
|---|