Recent results on the prediction of EEG signals in epilepsy by discrete-time cellular neural networks (DTCNN)

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

Abstract

In different investigations it has been shown that nonlinear signal processing can contribute to the task of finding precursors of impending epileptic seizures in the case of a focal epilepsy [6]. Various approaches to this feature extraction problem have been made including Volterra-Systems [2],Wavelet-Analysis and Cellular Neural Networks (CNN) [3]. This paper gives a detailed analysis of a recently proposed prediction [1] algorithm based on multi-layer delay-time DTCNN. The aim of this contribution is to reduce the high computation complexity caused by the permanent application of a supervised optimization procedure for successive data segments of an EEG recording. Thereby the prediction algorithm is studied by using different optimization procedures, different network topologies and different template symmetries.

Details

OriginalspracheEnglisch
Aufsatznummer1465811
Seiten (von - bis)5218-5221
Seitenumfang4
FachzeitschriftProceedings - IEEE International Symposium on Circuits and Systems
PublikationsstatusVeröffentlicht - 2005
Peer-Review-StatusJa

Konferenz

TitelIEEE International Symposium on Circuits and Systems 2005, ISCAS 2005
Dauer23 - 26 Mai 2005
StadtKobe
LandJapan

Externe IDs

ORCID /0000-0001-7436-0103/work/173513962

Schlagworte

ASJC Scopus Sachgebiete