Quasi-1D exciton channels in strain-engineered 2D materials

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Florian Dirnberger - , City University of New York (Autor:in)
  • Jonas D. Ziegler - , Universität Regensburg (Autor:in)
  • Paulo E. Faria Junior - , Universität Regensburg (Autor:in)
  • Rezlind Bushati - , City University of New York (Autor:in)
  • Takashi Taniguchi - , National Institute for Materials Science Tsukuba (Autor:in)
  • Kenji Watanabe - , National Institute for Materials Science Tsukuba (Autor:in)
  • Jaroslav Fabian - , Universität Regensburg (Autor:in)
  • Dominique Bougeard - , Universität Regensburg (Autor:in)
  • Alexey Chernikov - , Professur für Ultraschnelle Mikroskopie und Photonik (ct.qmat), Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Universität Regensburg (Autor:in)
  • Vinod M. Menon - , City University of New York (Autor:in)

Abstract

Strain engineering is a powerful tool in designing artificial platforms for high-temperature excitonic quantum devices. Combining strong light-matter interaction with robust and mobile exciton quasiparticles, two-dimensional transition metal dichalcogenides (2D TMDCs) hold great promise in this endeavor. However, realizing complex excitonic architectures based on strain-induced electronic potentials alone has proven to be exceptionally difficult so far. Here, we demonstrate deterministic strain engineering of both single-particle electronic bandstructure and excitonic many-particle interactions. We create quasi-1D transport channels to confine excitons and simultaneously enhance their mobility through locally suppressed exciton-phonon scattering. Using ultrafast, all-optical injection and time-resolved readout, we realize highly directional exciton flow with up to 100% anisotropy both at cryogenic and room temperatures. The demonstrated fundamental modification of the exciton transport properties in a deterministically strained 2D material with effectively tunable dimensionality has broad implications for both basic solid-state science and emerging technologies.

Details

OriginalspracheEnglisch
Aufsatznummereabj3066
FachzeitschriftScience advances
Jahrgang7
Ausgabenummer44
PublikationsstatusVeröffentlicht - Okt. 2021
Peer-Review-StatusJa

Externe IDs

PubMed 34714670

Schlagworte

ASJC Scopus Sachgebiete