Quartic L p-convergence of cubic Riemannian splines

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We prove quartic convergence of cubic spline interpolation for curves into Riemannian manifolds as the grid size of the interpolation grid tends to zero. In contrast to cubic spline interpolation in Euclidean space, where this result is classical, the interpolation operator is no longer linear. Still, concepts from the linear setting may be generalized to the Riemannian case, where we try to use intrinsic Riemannian formulations and avoid charts as much as possible.

Details

OriginalspracheEnglisch
Seiten (von - bis)3360-3385
Seitenumfang26
FachzeitschriftIMA Journal of Numerical Analysis
Jahrgang42
Ausgabenummer4
PublikationsstatusVeröffentlicht - 1 Okt. 2022
Peer-Review-StatusJa

Externe IDs

Scopus 85156123967
unpaywall 10.1093/imanum/drab077
Mendeley d108a71f-ba31-347c-9989-d591e0d2c5d6

Schlagworte

Schlagwörter

  • splines, Riemannian manifolds