Quantum transport enabled by non-adiabatic transitions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ajith Ramachandran - , Indian Institute of Science Education and Research Bhopal, Christ College (Autor:in)
  • Sumohan Giri - , Indian Institute of Science Education and Research Bhopal (Autor:in)
  • Alexander Eisfeld - , Professur für Theoretische Quantenoptik, Institut für Theoretische Physik, Max-Planck-Institut für Physik komplexer Systeme (Autor:in)
  • Sebastian Wüster - , Indian Institute of Science Education and Research Bhopal, Planqc GmbH (Autor:in)
  • Jan-Michael Rost - , Max-Planck-Institut für Physik komplexer Systeme (Autor:in)

Abstract

Quantum transport of charge or energy in networks with discrete sites is central to diverse quantum technologies, from molecular electronics to light harvesting and quantum opto-mechanical metamaterials. A one dimensional network can be viewed as waveguide. We show that if such waveguide is hybridised with a control unit that contains a few sites, then transmission through the waveguide depends sensitively on the motion of the sites in the control unit. Together, the hybrid waveguide and its control-unit form a Fano-Anderson chain whose Born-Oppenheimer surfaces inherit characteristics from both components: A bandstructure from the waveguide and potential energy steps as a function of site coordinates from the control-unit. Using time-dependent quantum wave packets, we reveal conditions under which the hybrid structure becomes transmissive only if the control unit contains mobile sites that induce non-adiabatic transitions between the surfaces. Hence, our approach provides functional synthetic Born-Oppenheimer surfaces for hybrid quantum technologies combining mechanic and excitonic elements, and has possible applications such as switching and temperature sensing.

Details

OriginalspracheEnglisch
Aufsatznummer46004
Seitenumfang6
FachzeitschriftEurophysics letters
Jahrgang151
Ausgabenummer4
PublikationsstatusVeröffentlicht - 28 Aug. 2025
Peer-Review-StatusJa

Externe IDs

Mendeley 48f933f9-7cab-3592-a244-74f22b828b7b
Scopus 105014331575

Schlagworte

Forschungsprofillinien der TU Dresden

ASJC Scopus Sachgebiete

Schlagwörter

  • Non-adiabatic, exciton dynamics, scattering