Quantum oscillation signatures of the Bloch-Grüneisen temperature in the Dirac semimetal ZrTe5

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • S. Galeski - , Universität Bonn, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • K. Araki - , National Defense Academy of Japan (Autor:in)
  • O. K. Forslund - , Universität Zürich, Uppsala University (Autor:in)
  • R. Wawrzyńczak - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • H. F. Legg - , Universität Basel (Autor:in)
  • P. K. Sivakumar - , Max Planck Institute of Microstructure Physics (Autor:in)
  • U. Miniotaite - , KTH Royal Institute of Technology (Autor:in)
  • F. Elson - , KTH Royal Institute of Technology (Autor:in)
  • M. Månsson - , KTH Royal Institute of Technology (Autor:in)
  • C. Witteveen - , Universität Genf (Autor:in)
  • F. O. Von Rohr - , Universität Genf (Autor:in)
  • A. Q.R. Baron - , Japan Synchrotron Radiation Research Institute (Autor:in)
  • D. Ishikawa - , Japan Synchrotron Radiation Research Institute (Autor:in)
  • Q. Li - , Brookhaven National Laboratory (Autor:in)
  • G. Gu - , Brookhaven National Laboratory (Autor:in)
  • L. X. Zhao - , CAS - Institute of Physics, Songshan Lake Materials Laboratory, University of Chinese Academy of Sciences (Autor:in)
  • W. L. Zhu - , CAS - Institute of Physics, University of Chinese Academy of Sciences, Shaanxi Normal University (Autor:in)
  • G. F. Chen - , CAS - Institute of Physics, Songshan Lake Materials Laboratory, University of Chinese Academy of Sciences (Autor:in)
  • Y. Wang - , CAS - Institute of Physics (Autor:in)
  • S. S.P. Parkin - , Max Planck Institute of Microstructure Physics (Autor:in)
  • D. Grobunov - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • S. Zherlitsyn - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • B. Vlaar - , Technische Universitat Wien (Autor:in)
  • D. H. Nguyen - , Technische Universitat Wien (Autor:in)
  • S. Paschen - , Technische Universitat Wien (Autor:in)
  • P. Narang - , University of California at Los Angeles (Autor:in)
  • C. Felser - , Universität Basel (Autor:in)
  • J. Wosnitza - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Physik in hohen Magnetfeldern (gB/HZDR) (Autor:in)
  • T. Meng - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Theoretische Festkörperphysik (Autor:in)
  • Y. Sassa - , Chalmers University of Technology (Autor:in)
  • S. A. Hartnoll - , University of Cambridge (Autor:in)
  • J. Gooth - , Universität Bonn, Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)

Abstract

The electron-phonon interaction is in many ways a solid state equivalent of quantum electrodynamics. Being always present, the e-p coupling is responsible for the intrinsic resistance of metals at finite temperatures, making it one of the most fundamental interactions present in solids. In typical metals, different regimes of e-p scattering are separated by a characteristic phonon energy scale - the Debye temperature. However, in metals harboring very small Fermi surfaces a new scale emerges - the Bloch-Grüneisen temperature. This is a temperature at which the average phonon momentum becomes comparable to the Fermi momentum of the electrons. Here we report sub-Kelvin transport and sound propagation experiments on the Dirac semimetal ZrTe5. The combination of the simple band structure with only a single small Fermi surface sheet allowed us to directly observe the Bloch-Grüneisen temperature and its consequences on electronic transport of a 3D metal in the limit where the small size of the Fermi surface leads to effective restoration of translational invariance of free space. Our results indicate that on entering this hydrodynamic transport regime, the viscosity of the Dirac electronic liquid undergoes an anomalous increase beyond the theoretically predicted T5 temperature dependence. Extension of our measurements to strong magnetic fields reveal that, despite the dimensional reduction of the electronic band structure, the electronic liquid retains characteristics of the zero-field hydrodynamic regime up to the quantum limit. This is vividly reflected by an anomalous suppression of the amplitude of quantum oscillations seen in the Shubnikov-de Haas effect.

Details

OriginalspracheEnglisch
AufsatznummerL121103
FachzeitschriftPhysical Review B
Jahrgang110
Ausgabenummer12
PublikationsstatusVeröffentlicht - 15 Sept. 2024
Peer-Review-StatusJa