Quality enhancement of compressed vibrotactile signals using recurrent neural networks and residual learning

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Andreas Noll - , Technische Universität München, Technische Universität Dresden (Autor:in)
  • Ayten Gurbuz - , Technische Universität München (Autor:in)
  • Basak Gulecyuz - , Technische Universität München, Technische Universität Dresden (Autor:in)
  • Kai Cui - , Technische Universität München (Autor:in)
  • Eckehard Steinbach - , Technische Universität München, Technische Universität Dresden (Autor:in)

Abstract

We present a neural network-based compression artifact removal technique for vibrotactile signals. The proposed decoder-side quality enhancement approach is based on recurrent neural networks (RNNs) and the principle of residual learning. We use a total of 8 nonlinear RNN layers trained to first estimate the difference between the original and the compressed signal. The estimated difference signal is then added to the compressed signal, followed by further linear processing steps to construct the enhanced signal. With our approach, we are able to enhance signals at almost all compression ratios by up to 1:25 dB. For the signals in our data set, rougly 86% are enhanced in their quality. Through an ablation study, we show that every block of our network is functioning as intended and contributes to the compression artifact removal. Additionally, we show that the chosen network parameters maximize performance.

Details

OriginalspracheEnglisch
Aufsatznummer9428501
Seiten (von - bis)316-321
Seitenumfang6
FachzeitschriftIEEE Transactions on Haptics
Jahrgang14
Ausgabenummer2
PublikationsstatusVeröffentlicht - 1 Apr. 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85105844195
PubMed 33974547

Schlagworte

Schlagwörter

  • Machine learning, Quality enhancement, RNN, residual learning, Tactile signal compression