Punctured groups for exotic fusion systems

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

The transporter systems of Oliver and Ventura and the localities of Chermak are classes of algebraic structures that model the p-local structures of finite groups. Other than the transporter categories and localities of finite groups, important examples include centric, quasicentric, and subcentric linking systems for saturated fusion systems. These examples are, however, not defined in general on the full collection of subgroups of the Sylow group. We study here punctured groups, a short name for transporter systems or localities on the collection of nonidentity subgroups of a finite p-group. As an application of the existence of a punctured group, we show that the subgroup homology decomposition on the centric collection is sharp for the fusion system. We also prove a Signalizer Functor Theorem for punctured groups and use it to show that the smallest Benson–Solomon exotic fusion system at the prime 2 has a punctured group, while the others do not. As for exotic fusion systems at odd primes p, we survey several classes and find that in almost all cases, either the subcentric linking system is a punctured group for the system, or the system has no punctured group because the normalizer of some subgroup of order p is exotic. Finally, we classify punctured groups restricting to the centric linking system for certain fusion systems on extraspecial p-groups of order p^3.
Titel in Übersetzung
Punktierte Gruppen für exotische Fusionssysteme

Details

OriginalspracheEnglisch
Aufsatznummer12054
Seiten (von - bis)21-99
Seitenumfang79
FachzeitschriftTransactions of the London Mathematical Society
Jahrgang10
Ausgabenummer1
PublikationsstatusVeröffentlicht - 7 Juli 2023
Peer-Review-StatusJa

Externe IDs

Scopus 85165488316

Schlagworte

DFG-Fachsystematik nach Fachkollegium

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

ASJC Scopus Sachgebiete