Proton Traffic Jam: Effect of Nanoconfinement and Acid Concentration on Proton Hopping Mechanism

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ellen M. Adams - , Ruhr-Universität Bochum (Autor:in)
  • Hongxia Hao - , Lawrence Berkeley National Laboratory, University of California at Berkeley (Autor:in)
  • Itai Leven - , Lawrence Berkeley National Laboratory, University of California at Berkeley (Autor:in)
  • Maximilian Rüttermann - , Ruhr-Universität Bochum (Autor:in)
  • Hanna Wirtz - , Ruhr-Universität Bochum (Autor:in)
  • Martina Havenith - , Ruhr-Universität Bochum (Autor:in)
  • Teresa Head-Gordon - , Lawrence Berkeley National Laboratory, University of California at Berkeley (Autor:in)

Abstract

The properties of the water network in concentrated HCl acid pools in nanometer-sized reverse nonionic micelles were probed with TeraHertz absorption, dielectric relaxation spectroscopy, and reactive force field simulations capable of describing proton hopping mechanisms. We identify that only at a critical micelle size of W0=9 do solvated proton complexes form in the water pool, accompanied by a change in mechanism from Grotthuss forward shuttling to one that favors local oscillatory hopping. This is due to a preference for H+ and Cl ions to adsorb to the micelle interface, together with an acid concentration effect that causes a “traffic jam” in which the short-circuiting of the hydrogen-bonding motif of the hydronium ion decreases the forward hopping rate throughout the water interior even as the micelle size increases. These findings have implications for atmospheric chemistry, biochemical and biophysical environments, and energy materials, as transport of protons vital to these processes can be suppressed due to confinement, aggregation, and/or concentration.

Details

OriginalspracheEnglisch
Seiten (von - bis)25419-25427
Seitenumfang9
FachzeitschriftAngewandte Chemie - International Edition
Jahrgang60
Ausgabenummer48
PublikationsstatusVeröffentlicht - 22 Nov. 2021
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0002-8120-8553/work/161409571

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • confined water, Grotthuss mechanism, micelles, proton hopping, THz spectroscopy