Projection-Based Finite Elements for Nonlinear Function Spaces
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We introduce a novel type of approximation spaces for functions with values in a nonlinear manifold. The discrete functions are constructed by piecewise polynomial interpolation in a Euclidean embedding space, and then projected pointwise onto the manifold. We show optimal interpolation error bounds with respect to Lebesgue and Sobolev norms. Additionally, we show similar bounds for the test functions, i.e., variations of discrete functions. Combining these results with a nonlinear Céa lemma, we prove optimal L2 and H1 discretization error bounds for harmonic maps from a planar domain into a smooth manifold. All these error bounds are also verified numerically.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 404-428 |
Seitenumfang | 25 |
Fachzeitschrift | SIAM Journal on Numerical Analysis |
Jahrgang | 57 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 2019 |
Peer-Review-Status | Ja |
Externe IDs
ArXiv | 1803.06576 |
---|---|
Scopus | 85062950311 |
ORCID | /0000-0003-1093-6374/work/142250561 |
Schlagworte
Schlagwörter
- geometric finite elements, projection, interpolation errors, discretization errors, nonlinear manifold, harmonic maps