Projection-Based Finite Elements for Nonlinear Function Spaces

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We introduce a novel type of approximation spaces for functions with values in a nonlinear manifold. The discrete functions are constructed by piecewise polynomial interpolation in a Euclidean embedding space, and then projected pointwise onto the manifold. We show optimal interpolation error bounds with respect to Lebesgue and Sobolev norms. Additionally, we show similar bounds for the test functions, i.e., variations of discrete functions. Combining these results with a nonlinear Céa lemma, we prove optimal L2 and H1 discretization error bounds for harmonic maps from a planar domain into a smooth manifold. All these error bounds are also verified numerically.

Details

OriginalspracheEnglisch
Seiten (von - bis)404-428
Seitenumfang25
FachzeitschriftSIAM Journal on Numerical Analysis
Jahrgang57
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2019
Peer-Review-StatusJa

Externe IDs

ArXiv 1803.06576
Scopus 85062950311
ORCID /0000-0003-1093-6374/work/142250561

Schlagworte

Schlagwörter

  • geometric finite elements, projection, interpolation errors, discretization errors, nonlinear manifold, harmonic maps