Probabilistic omega-automata
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Probabilistic ω-automata are variants of nondeterministic automata over infinite words where all choices are resolved by probabilistic distributions. Acceptance of a run for an infinite input word can be defined using traditional acceptance criteria for ω-automata, such as Büchi, Rabin or Streett conditions. The accepted language of a probabilistic ω-automata is then defined by imposing a constraint on the probability measure of the accepting runs. In this paper, we study a series of fundamental properties of probabilistic ω-automata with three different language-semantics: (1) the probable semantics that requires positive acceptance probability, (2) the almost-sure semantics that requires acceptance with probability 1, and (3) the threshold semantics that relies on an additional parameter λ ∈ ]0,1[ that specifies a lower probability bound for the acceptance probability. We provide a comparison of probabilistic ω-automata under these three semantics and nondeterministic ω-automata concerning expressiveness and efficiency. Furthermore, we address closure properties under the Boolean operators union, intersection and complementation and algorithmic aspects, such as checking emptiness or language containment.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1-52 |
Fachzeitschrift | Journal of the ACM |
Jahrgang | 59 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 2012 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0002-5321-9343/work/142236663 |
---|
Schlagworte
Schlagwörter
- Omega-regular languages, Büchi automata, probabilistic automata, Markov decision processes