Probabilistic noninvasive prediction of wall properties of abdominal aortic aneurysms using Bayesian regression

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jonas Biehler - , Technische Universität München (Autor:in)
  • Sebastian Kehl - , Technische Universität München (Autor:in)
  • Michael W. Gee - , Technische Universität München (Autor:in)
  • Fadwa Schmies - , Technische Universität München (Autor:in)
  • Jaroslav Pelisek - , Technische Universität München (Autor:in)
  • Andreas Maier - , Technische Universität München (Autor:in)
  • Christian Reeps - , Klinikum der Ludwig-Maximilians-Universität (LMU) München, Technische Universität München (Autor:in)
  • Hans Henning Eckstein - , Technische Universität München (Autor:in)
  • Wolfgang A. Wall - , Technische Universität München (Autor:in)

Abstract

Multiple patient-specific parameters, such as wall thickness, wall strength, and constitutive properties, are required for the computational assessment of abdominal aortic aneurysm (AAA) rupture risk. Unfortunately, many of these quantities are not easily accessible and could only be determined by invasive procedures, rendering a computational rupture risk assessment obsolete. This study investigates two different approaches to predict these quantities using regression models in combination with a multitude of noninvasively accessible, explanatory variables. We have gathered a large dataset comprising tensile tests performed with AAA specimens and supplementary patient information based on blood analysis, the patients medical history, and geometric features of the AAAs. Using this unique database, we harness the capability of state-of-the-art Bayesian regression techniques to infer probabilistic models for multiple quantities of interest. After a brief presentation of our experimental results, we show that we can effectively reduce the predictive uncertainty in the assessment of several patient-specific parameters, most importantly in thickness and failure strength of the AAA wall. Thereby, the more elaborate Bayesian regression approach based on Gaussian processes consistently outperforms standard linear regression. Moreover, our study contains a comparison to a previously proposed model for the wall strength.

Details

OriginalspracheEnglisch
Seiten (von - bis)45-61
Seitenumfang17
FachzeitschriftBiomechanics and modeling in mechanobiology
Jahrgang16
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Feb. 2017
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 27260299

Schlagworte

Schlagwörter

  • Abdominal aortic aneurysm, Bayesian regression, Wall properties