Pressure-tuned quantum criticality in the large-D antiferromagnet DTN

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung


  • Kirill Yu Povarov - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • David E. Graf - , Florida State University (Autor:in)
  • Andreas Hauspurg - , Professur für Physik in hohen Magnetfeldern (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Sergei Zherlitsyn - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Joachim Wosnitza - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Physik in hohen Magnetfeldern (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Takahiro Sakurai - , Kobe University (Autor:in)
  • Hitoshi Ohta - , Kobe University (Autor:in)
  • Shojiro Kimura - , Tohoku University (Autor:in)
  • Hiroyuki Nojiri - , Tohoku University (Autor:in)
  • V. Ovidiu Garlea - , Oak Ridge National Laboratory (Autor:in)
  • Andrey Zheludev - , ETH Zurich (Autor:in)
  • Armando Paduan-Filho - , University of São Paulo (Autor:in)
  • Michael Nicklas - , Max Planck Institute for Chemical Physics of Solids (Autor:in)
  • Sergei A. Zvyagin - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)


Strongly correlated spin systems can be driven to quantum critical points via various routes. In particular, gapped quantum antiferromagnets can undergo phase transitions into a magnetically ordered state with applied pressure or magnetic field, acting as tuning parameters. These transitions are characterized by z = 1 or z = 2 dynamical critical exponents, determined by the linear and quadratic low-energy dispersion of spin excitations, respectively. Employing high-frequency susceptibility and ultrasound techniques, we demonstrate that the tetragonal easy-plane quantum antiferromagnet NiCl2 ⋅ 4SC(NH2)2 (aka DTN) undergoes a spin-gap closure transition at about 4.2 kbar, resulting in a pressure-induced magnetic ordering. The studies are complemented by high-pressure-electron spin-resonance measurements confirming the proposed scenario. Powder neutron diffraction measurements revealed that no lattice distortion occurs at this pressure and the high spin symmetry is preserved, establishing DTN as a perfect platform to investigate z = 1 quantum critical phenomena. The experimental observations are supported by DMRG calculations, allowing us to quantitatively describe the pressure-driven evolution of critical fields and spin-Hamiltonian parameters in DTN.


FachzeitschriftNature communications
PublikationsstatusVeröffentlicht - 14 März 2024

Externe IDs

PubMed 38486067